Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem48.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
fourierdlem48.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
fourierdlem48.altb |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
4 |
|
fourierdlem48.p |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
5 |
|
fourierdlem48.t |
⊢ 𝑇 = ( 𝐵 − 𝐴 ) |
6 |
|
fourierdlem48.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
7 |
|
fourierdlem48.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
8 |
|
fourierdlem48.f |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℝ ) |
9 |
|
fourierdlem48.dper |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ ) → ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ 𝐷 ) |
10 |
|
fourierdlem48.per |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ ) → ( 𝐹 ‘ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
11 |
|
fourierdlem48.cn |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
12 |
|
fourierdlem48.r |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
13 |
|
fourierdlem48.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
14 |
|
fourierdlem48.z |
⊢ 𝑍 = ( 𝑥 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) |
15 |
|
fourierdlem48.e |
⊢ 𝐸 = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( 𝑍 ‘ 𝑥 ) ) ) |
16 |
|
fourierdlem48.ch |
⊢ ( 𝜒 ↔ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) |
17 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) = 𝐵 ) → 𝜑 ) |
18 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
19 |
6
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
20 |
6
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑀 ) |
21 |
|
fzolb |
⊢ ( 0 ∈ ( 0 ..^ 𝑀 ) ↔ ( 0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀 ) ) |
22 |
18 19 20 21
|
syl3anbrc |
⊢ ( 𝜑 → 0 ∈ ( 0 ..^ 𝑀 ) ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) = 𝐵 ) → 0 ∈ ( 0 ..^ 𝑀 ) ) |
24 |
2 13
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝑋 ) ∈ ℝ ) |
25 |
2 1
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
26 |
5 25
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
27 |
1 2
|
posdifd |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵 − 𝐴 ) ) ) |
28 |
3 27
|
mpbid |
⊢ ( 𝜑 → 0 < ( 𝐵 − 𝐴 ) ) |
29 |
28 5
|
breqtrrdi |
⊢ ( 𝜑 → 0 < 𝑇 ) |
30 |
29
|
gt0ne0d |
⊢ ( 𝜑 → 𝑇 ≠ 0 ) |
31 |
24 26 30
|
redivcld |
⊢ ( 𝜑 → ( ( 𝐵 − 𝑋 ) / 𝑇 ) ∈ ℝ ) |
32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) = 𝐵 ) → ( ( 𝐵 − 𝑋 ) / 𝑇 ) ∈ ℝ ) |
33 |
32
|
flcld |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) = 𝐵 ) → ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) ∈ ℤ ) |
34 |
|
1zzd |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) = 𝐵 ) → 1 ∈ ℤ ) |
35 |
33 34
|
zsubcld |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) = 𝐵 ) → ( ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) − 1 ) ∈ ℤ ) |
36 |
|
id |
⊢ ( ( 𝐸 ‘ 𝑋 ) = 𝐵 → ( 𝐸 ‘ 𝑋 ) = 𝐵 ) |
37 |
5
|
a1i |
⊢ ( ( 𝐸 ‘ 𝑋 ) = 𝐵 → 𝑇 = ( 𝐵 − 𝐴 ) ) |
38 |
36 37
|
oveq12d |
⊢ ( ( 𝐸 ‘ 𝑋 ) = 𝐵 → ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) = ( 𝐵 − ( 𝐵 − 𝐴 ) ) ) |
39 |
2
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
40 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
41 |
39 40
|
nncand |
⊢ ( 𝜑 → ( 𝐵 − ( 𝐵 − 𝐴 ) ) = 𝐴 ) |
42 |
38 41
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) = 𝐵 ) → ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) = 𝐴 ) |
43 |
4
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
44 |
6 43
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
45 |
7 44
|
mpbid |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
46 |
45
|
simpld |
⊢ ( 𝜑 → 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
47 |
|
elmapi |
⊢ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
48 |
46 47
|
syl |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
49 |
6
|
nnnn0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
50 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
51 |
49 50
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
52 |
|
eluzfz1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → 0 ∈ ( 0 ... 𝑀 ) ) |
53 |
51 52
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑀 ) ) |
54 |
48 53
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) ∈ ℝ ) |
55 |
54
|
rexrd |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) ∈ ℝ* ) |
56 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
57 |
|
0le1 |
⊢ 0 ≤ 1 |
58 |
57
|
a1i |
⊢ ( 𝜑 → 0 ≤ 1 ) |
59 |
6
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝑀 ) |
60 |
18 19 56 58 59
|
elfzd |
⊢ ( 𝜑 → 1 ∈ ( 0 ... 𝑀 ) ) |
61 |
48 60
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑄 ‘ 1 ) ∈ ℝ ) |
62 |
61
|
rexrd |
⊢ ( 𝜑 → ( 𝑄 ‘ 1 ) ∈ ℝ* ) |
63 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
64 |
45
|
simprd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
65 |
64
|
simplld |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = 𝐴 ) |
66 |
1
|
leidd |
⊢ ( 𝜑 → 𝐴 ≤ 𝐴 ) |
67 |
65 66
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) ≤ 𝐴 ) |
68 |
65
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = ( 𝑄 ‘ 0 ) ) |
69 |
|
0re |
⊢ 0 ∈ ℝ |
70 |
|
eleq1 |
⊢ ( 𝑖 = 0 → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↔ 0 ∈ ( 0 ..^ 𝑀 ) ) ) |
71 |
70
|
anbi2d |
⊢ ( 𝑖 = 0 → ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ↔ ( 𝜑 ∧ 0 ∈ ( 0 ..^ 𝑀 ) ) ) ) |
72 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 0 ) ) |
73 |
|
oveq1 |
⊢ ( 𝑖 = 0 → ( 𝑖 + 1 ) = ( 0 + 1 ) ) |
74 |
73
|
fveq2d |
⊢ ( 𝑖 = 0 → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑄 ‘ ( 0 + 1 ) ) ) |
75 |
72 74
|
breq12d |
⊢ ( 𝑖 = 0 → ( ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ↔ ( 𝑄 ‘ 0 ) < ( 𝑄 ‘ ( 0 + 1 ) ) ) ) |
76 |
71 75
|
imbi12d |
⊢ ( 𝑖 = 0 → ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ( ( 𝜑 ∧ 0 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 0 ) < ( 𝑄 ‘ ( 0 + 1 ) ) ) ) ) |
77 |
45
|
simprrd |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
78 |
77
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
79 |
76 78
|
vtoclg |
⊢ ( 0 ∈ ℝ → ( ( 𝜑 ∧ 0 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 0 ) < ( 𝑄 ‘ ( 0 + 1 ) ) ) ) |
80 |
69 79
|
ax-mp |
⊢ ( ( 𝜑 ∧ 0 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 0 ) < ( 𝑄 ‘ ( 0 + 1 ) ) ) |
81 |
22 80
|
mpdan |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) < ( 𝑄 ‘ ( 0 + 1 ) ) ) |
82 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
83 |
82
|
fveq2i |
⊢ ( 𝑄 ‘ 1 ) = ( 𝑄 ‘ ( 0 + 1 ) ) |
84 |
81 83
|
breqtrrdi |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) < ( 𝑄 ‘ 1 ) ) |
85 |
68 84
|
eqbrtrd |
⊢ ( 𝜑 → 𝐴 < ( 𝑄 ‘ 1 ) ) |
86 |
55 62 63 67 85
|
elicod |
⊢ ( 𝜑 → 𝐴 ∈ ( ( 𝑄 ‘ 0 ) [,) ( 𝑄 ‘ 1 ) ) ) |
87 |
83
|
oveq2i |
⊢ ( ( 𝑄 ‘ 0 ) [,) ( 𝑄 ‘ 1 ) ) = ( ( 𝑄 ‘ 0 ) [,) ( 𝑄 ‘ ( 0 + 1 ) ) ) |
88 |
86 87
|
eleqtrdi |
⊢ ( 𝜑 → 𝐴 ∈ ( ( 𝑄 ‘ 0 ) [,) ( 𝑄 ‘ ( 0 + 1 ) ) ) ) |
89 |
88
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) = 𝐵 ) → 𝐴 ∈ ( ( 𝑄 ‘ 0 ) [,) ( 𝑄 ‘ ( 0 + 1 ) ) ) ) |
90 |
42 89
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) = 𝐵 ) → ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) ∈ ( ( 𝑄 ‘ 0 ) [,) ( 𝑄 ‘ ( 0 + 1 ) ) ) ) |
91 |
15
|
a1i |
⊢ ( 𝜑 → 𝐸 = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( 𝑍 ‘ 𝑥 ) ) ) ) |
92 |
|
id |
⊢ ( 𝑥 = 𝑋 → 𝑥 = 𝑋 ) |
93 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑍 ‘ 𝑥 ) = ( 𝑍 ‘ 𝑋 ) ) |
94 |
92 93
|
oveq12d |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 + ( 𝑍 ‘ 𝑥 ) ) = ( 𝑋 + ( 𝑍 ‘ 𝑋 ) ) ) |
95 |
94
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝑥 + ( 𝑍 ‘ 𝑥 ) ) = ( 𝑋 + ( 𝑍 ‘ 𝑋 ) ) ) |
96 |
14
|
a1i |
⊢ ( 𝜑 → 𝑍 = ( 𝑥 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) |
97 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐵 − 𝑥 ) = ( 𝐵 − 𝑋 ) ) |
98 |
97
|
oveq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐵 − 𝑥 ) / 𝑇 ) = ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) |
99 |
98
|
fveq2d |
⊢ ( 𝑥 = 𝑋 → ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) = ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) ) |
100 |
99
|
oveq1d |
⊢ ( 𝑥 = 𝑋 → ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) = ( ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) · 𝑇 ) ) |
101 |
100
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) = ( ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) · 𝑇 ) ) |
102 |
31
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) ∈ ℤ ) |
103 |
102
|
zred |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) ∈ ℝ ) |
104 |
103 26
|
remulcld |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) · 𝑇 ) ∈ ℝ ) |
105 |
96 101 13 104
|
fvmptd |
⊢ ( 𝜑 → ( 𝑍 ‘ 𝑋 ) = ( ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) · 𝑇 ) ) |
106 |
105 104
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑍 ‘ 𝑋 ) ∈ ℝ ) |
107 |
13 106
|
readdcld |
⊢ ( 𝜑 → ( 𝑋 + ( 𝑍 ‘ 𝑋 ) ) ∈ ℝ ) |
108 |
91 95 13 107
|
fvmptd |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑋 ) = ( 𝑋 + ( 𝑍 ‘ 𝑋 ) ) ) |
109 |
105
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 + ( 𝑍 ‘ 𝑋 ) ) = ( 𝑋 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) · 𝑇 ) ) ) |
110 |
108 109
|
eqtrd |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑋 ) = ( 𝑋 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) · 𝑇 ) ) ) |
111 |
110
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) = ( ( 𝑋 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) · 𝑇 ) ) − 𝑇 ) ) |
112 |
13
|
recnd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
113 |
104
|
recnd |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) · 𝑇 ) ∈ ℂ ) |
114 |
26
|
recnd |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
115 |
112 113 114
|
addsubassd |
⊢ ( 𝜑 → ( ( 𝑋 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) · 𝑇 ) ) − 𝑇 ) = ( 𝑋 + ( ( ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) · 𝑇 ) − 𝑇 ) ) ) |
116 |
102
|
zcnd |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) ∈ ℂ ) |
117 |
116 114
|
mulsubfacd |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) · 𝑇 ) − 𝑇 ) = ( ( ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) − 1 ) · 𝑇 ) ) |
118 |
117
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 + ( ( ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) · 𝑇 ) − 𝑇 ) ) = ( 𝑋 + ( ( ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) − 1 ) · 𝑇 ) ) ) |
119 |
111 115 118
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) = ( 𝑋 + ( ( ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) − 1 ) · 𝑇 ) ) ) |
120 |
119
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) = 𝐵 ) → ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) = ( 𝑋 + ( ( ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) − 1 ) · 𝑇 ) ) ) |
121 |
|
oveq1 |
⊢ ( 𝑘 = ( ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) − 1 ) → ( 𝑘 · 𝑇 ) = ( ( ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) − 1 ) · 𝑇 ) ) |
122 |
121
|
oveq2d |
⊢ ( 𝑘 = ( ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) − 1 ) → ( 𝑋 + ( 𝑘 · 𝑇 ) ) = ( 𝑋 + ( ( ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) − 1 ) · 𝑇 ) ) ) |
123 |
122
|
eqeq2d |
⊢ ( 𝑘 = ( ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) − 1 ) → ( ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ↔ ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) = ( 𝑋 + ( ( ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) − 1 ) · 𝑇 ) ) ) ) |
124 |
123
|
anbi2d |
⊢ ( 𝑘 = ( ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) − 1 ) → ( ( ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) ∈ ( ( 𝑄 ‘ 0 ) [,) ( 𝑄 ‘ ( 0 + 1 ) ) ) ∧ ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ↔ ( ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) ∈ ( ( 𝑄 ‘ 0 ) [,) ( 𝑄 ‘ ( 0 + 1 ) ) ) ∧ ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) = ( 𝑋 + ( ( ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) − 1 ) · 𝑇 ) ) ) ) ) |
125 |
124
|
rspcev |
⊢ ( ( ( ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) − 1 ) ∈ ℤ ∧ ( ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) ∈ ( ( 𝑄 ‘ 0 ) [,) ( 𝑄 ‘ ( 0 + 1 ) ) ) ∧ ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) = ( 𝑋 + ( ( ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) − 1 ) · 𝑇 ) ) ) ) → ∃ 𝑘 ∈ ℤ ( ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) ∈ ( ( 𝑄 ‘ 0 ) [,) ( 𝑄 ‘ ( 0 + 1 ) ) ) ∧ ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) |
126 |
35 90 120 125
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) = 𝐵 ) → ∃ 𝑘 ∈ ℤ ( ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) ∈ ( ( 𝑄 ‘ 0 ) [,) ( 𝑄 ‘ ( 0 + 1 ) ) ) ∧ ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) |
127 |
72 74
|
oveq12d |
⊢ ( 𝑖 = 0 → ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑄 ‘ 0 ) [,) ( 𝑄 ‘ ( 0 + 1 ) ) ) ) |
128 |
127
|
eleq2d |
⊢ ( 𝑖 = 0 → ( ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) ∈ ( ( 𝑄 ‘ 0 ) [,) ( 𝑄 ‘ ( 0 + 1 ) ) ) ) ) |
129 |
128
|
anbi1d |
⊢ ( 𝑖 = 0 → ( ( ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ↔ ( ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) ∈ ( ( 𝑄 ‘ 0 ) [,) ( 𝑄 ‘ ( 0 + 1 ) ) ) ∧ ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) ) |
130 |
129
|
rexbidv |
⊢ ( 𝑖 = 0 → ( ∃ 𝑘 ∈ ℤ ( ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ↔ ∃ 𝑘 ∈ ℤ ( ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) ∈ ( ( 𝑄 ‘ 0 ) [,) ( 𝑄 ‘ ( 0 + 1 ) ) ) ∧ ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) ) |
131 |
130
|
rspcev |
⊢ ( ( 0 ∈ ( 0 ..^ 𝑀 ) ∧ ∃ 𝑘 ∈ ℤ ( ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) ∈ ( ( 𝑄 ‘ 0 ) [,) ( 𝑄 ‘ ( 0 + 1 ) ) ) ∧ ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑘 ∈ ℤ ( ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) |
132 |
23 126 131
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) = 𝐵 ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑘 ∈ ℤ ( ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) |
133 |
|
ovex |
⊢ ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) ∈ V |
134 |
|
eleq1 |
⊢ ( 𝑦 = ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) → ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
135 |
|
eqeq1 |
⊢ ( 𝑦 = ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) → ( 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ↔ ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) |
136 |
134 135
|
anbi12d |
⊢ ( 𝑦 = ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) → ( ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ↔ ( ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) ) |
137 |
136
|
2rexbidv |
⊢ ( 𝑦 = ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) → ( ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑘 ∈ ℤ ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ↔ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑘 ∈ ℤ ( ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) ) |
138 |
137
|
anbi2d |
⊢ ( 𝑦 = ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) → ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑘 ∈ ℤ ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) ↔ ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑘 ∈ ℤ ( ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) ) ) |
139 |
138
|
imbi1d |
⊢ ( 𝑦 = ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) → ( ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑘 ∈ ℤ ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) → ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ≠ ∅ ) ↔ ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑘 ∈ ℤ ( ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) → ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ≠ ∅ ) ) ) |
140 |
|
simpr |
⊢ ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑘 ∈ ℤ ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑘 ∈ ℤ ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) |
141 |
|
nfv |
⊢ Ⅎ 𝑖 𝜑 |
142 |
|
nfre1 |
⊢ Ⅎ 𝑖 ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑘 ∈ ℤ ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) |
143 |
141 142
|
nfan |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑘 ∈ ℤ ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) |
144 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
145 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 0 ..^ 𝑀 ) |
146 |
|
nfre1 |
⊢ Ⅎ 𝑘 ∃ 𝑘 ∈ ℤ ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) |
147 |
145 146
|
nfrexw |
⊢ Ⅎ 𝑘 ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑘 ∈ ℤ ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) |
148 |
144 147
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑘 ∈ ℤ ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) |
149 |
|
simp1 |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) → 𝜑 ) |
150 |
|
simp2l |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
151 |
|
simp3l |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) → 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
152 |
149 150 151
|
jca31 |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) → ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
153 |
|
simp2r |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) → 𝑘 ∈ ℤ ) |
154 |
|
simp3r |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) → 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) |
155 |
16
|
biimpi |
⊢ ( 𝜒 → ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) |
156 |
155
|
simplld |
⊢ ( 𝜒 → ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
157 |
156
|
simplld |
⊢ ( 𝜒 → 𝜑 ) |
158 |
|
frel |
⊢ ( 𝐹 : 𝐷 ⟶ ℝ → Rel 𝐹 ) |
159 |
|
resindm |
⊢ ( Rel 𝐹 → ( 𝐹 ↾ ( ( 𝑋 (,) +∞ ) ∩ dom 𝐹 ) ) = ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) ) |
160 |
159
|
eqcomd |
⊢ ( Rel 𝐹 → ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) = ( 𝐹 ↾ ( ( 𝑋 (,) +∞ ) ∩ dom 𝐹 ) ) ) |
161 |
157 8 158 160
|
4syl |
⊢ ( 𝜒 → ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) = ( 𝐹 ↾ ( ( 𝑋 (,) +∞ ) ∩ dom 𝐹 ) ) ) |
162 |
|
fdm |
⊢ ( 𝐹 : 𝐷 ⟶ ℝ → dom 𝐹 = 𝐷 ) |
163 |
157 8 162
|
3syl |
⊢ ( 𝜒 → dom 𝐹 = 𝐷 ) |
164 |
163
|
ineq2d |
⊢ ( 𝜒 → ( ( 𝑋 (,) +∞ ) ∩ dom 𝐹 ) = ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ) |
165 |
164
|
reseq2d |
⊢ ( 𝜒 → ( 𝐹 ↾ ( ( 𝑋 (,) +∞ ) ∩ dom 𝐹 ) ) = ( 𝐹 ↾ ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ) ) |
166 |
161 165
|
eqtrd |
⊢ ( 𝜒 → ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) = ( 𝐹 ↾ ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ) ) |
167 |
166
|
oveq1d |
⊢ ( 𝜒 → ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) = ( ( 𝐹 ↾ ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ) limℂ 𝑋 ) ) |
168 |
157 8
|
syl |
⊢ ( 𝜒 → 𝐹 : 𝐷 ⟶ ℝ ) |
169 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
170 |
169
|
a1i |
⊢ ( 𝜒 → ℝ ⊆ ℂ ) |
171 |
168 170
|
fssd |
⊢ ( 𝜒 → 𝐹 : 𝐷 ⟶ ℂ ) |
172 |
|
inss2 |
⊢ ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ⊆ 𝐷 |
173 |
172
|
a1i |
⊢ ( 𝜒 → ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ⊆ 𝐷 ) |
174 |
171 173
|
fssresd |
⊢ ( 𝜒 → ( 𝐹 ↾ ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ) : ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ⟶ ℂ ) |
175 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
176 |
175
|
a1i |
⊢ ( 𝜒 → +∞ ∈ ℝ* ) |
177 |
156
|
simplrd |
⊢ ( 𝜒 → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
178 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
179 |
|
fzofzp1 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
180 |
179
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
181 |
178 180
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
182 |
157 177 181
|
syl2anc |
⊢ ( 𝜒 → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
183 |
155
|
simplrd |
⊢ ( 𝜒 → 𝑘 ∈ ℤ ) |
184 |
183
|
zred |
⊢ ( 𝜒 → 𝑘 ∈ ℝ ) |
185 |
157 26
|
syl |
⊢ ( 𝜒 → 𝑇 ∈ ℝ ) |
186 |
184 185
|
remulcld |
⊢ ( 𝜒 → ( 𝑘 · 𝑇 ) ∈ ℝ ) |
187 |
182 186
|
resubcld |
⊢ ( 𝜒 → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ∈ ℝ ) |
188 |
187
|
rexrd |
⊢ ( 𝜒 → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ∈ ℝ* ) |
189 |
187
|
ltpnfd |
⊢ ( 𝜒 → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) < +∞ ) |
190 |
188 176 189
|
xrltled |
⊢ ( 𝜒 → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ≤ +∞ ) |
191 |
|
iooss2 |
⊢ ( ( +∞ ∈ ℝ* ∧ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ≤ +∞ ) → ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ⊆ ( 𝑋 (,) +∞ ) ) |
192 |
176 190 191
|
syl2anc |
⊢ ( 𝜒 → ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ⊆ ( 𝑋 (,) +∞ ) ) |
193 |
183
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑘 ∈ ℤ ) |
194 |
193
|
zcnd |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑘 ∈ ℂ ) |
195 |
185
|
recnd |
⊢ ( 𝜒 → 𝑇 ∈ ℂ ) |
196 |
195
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑇 ∈ ℂ ) |
197 |
194 196
|
mulneg1d |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( - 𝑘 · 𝑇 ) = - ( 𝑘 · 𝑇 ) ) |
198 |
197
|
oveq2d |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) + ( - 𝑘 · 𝑇 ) ) = ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) + - ( 𝑘 · 𝑇 ) ) ) |
199 |
|
elioore |
⊢ ( 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) → 𝑤 ∈ ℝ ) |
200 |
199
|
recnd |
⊢ ( 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) → 𝑤 ∈ ℂ ) |
201 |
200
|
adantl |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑤 ∈ ℂ ) |
202 |
194 196
|
mulcld |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( 𝑘 · 𝑇 ) ∈ ℂ ) |
203 |
201 202
|
addcld |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ℂ ) |
204 |
203 202
|
negsubd |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) + - ( 𝑘 · 𝑇 ) ) = ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) − ( 𝑘 · 𝑇 ) ) ) |
205 |
201 202
|
pncand |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) − ( 𝑘 · 𝑇 ) ) = 𝑤 ) |
206 |
198 204 205
|
3eqtrrd |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑤 = ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) + ( - 𝑘 · 𝑇 ) ) ) |
207 |
157
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝜑 ) |
208 |
156
|
simpld |
⊢ ( 𝜒 → ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ) |
209 |
|
cncff |
⊢ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
210 |
|
fdm |
⊢ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ → dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
211 |
11 209 210
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
212 |
|
ssdmres |
⊢ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom 𝐹 ↔ dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
213 |
211 212
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom 𝐹 ) |
214 |
8 162
|
syl |
⊢ ( 𝜑 → dom 𝐹 = 𝐷 ) |
215 |
214
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → dom 𝐹 = 𝐷 ) |
216 |
213 215
|
sseqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ 𝐷 ) |
217 |
208 216
|
syl |
⊢ ( 𝜒 → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ 𝐷 ) |
218 |
217
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ 𝐷 ) |
219 |
|
elfzofz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
220 |
219
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
221 |
178 220
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
222 |
157 177 221
|
syl2anc |
⊢ ( 𝜒 → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
223 |
222
|
rexrd |
⊢ ( 𝜒 → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
224 |
223
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
225 |
182
|
rexrd |
⊢ ( 𝜒 → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
226 |
225
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
227 |
199
|
adantl |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑤 ∈ ℝ ) |
228 |
193
|
zred |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑘 ∈ ℝ ) |
229 |
207 26
|
syl |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑇 ∈ ℝ ) |
230 |
228 229
|
remulcld |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( 𝑘 · 𝑇 ) ∈ ℝ ) |
231 |
227 230
|
readdcld |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ℝ ) |
232 |
222
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
233 |
157 13
|
syl |
⊢ ( 𝜒 → 𝑋 ∈ ℝ ) |
234 |
233 186
|
readdcld |
⊢ ( 𝜒 → ( 𝑋 + ( 𝑘 · 𝑇 ) ) ∈ ℝ ) |
235 |
234
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( 𝑋 + ( 𝑘 · 𝑇 ) ) ∈ ℝ ) |
236 |
16
|
simprbi |
⊢ ( 𝜒 → 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) |
237 |
236
|
eqcomd |
⊢ ( 𝜒 → ( 𝑋 + ( 𝑘 · 𝑇 ) ) = 𝑦 ) |
238 |
156
|
simprd |
⊢ ( 𝜒 → 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
239 |
237 238
|
eqeltrd |
⊢ ( 𝜒 → ( 𝑋 + ( 𝑘 · 𝑇 ) ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
240 |
|
icogelb |
⊢ ( ( ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ∧ ( 𝑋 + ( 𝑘 · 𝑇 ) ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) |
241 |
223 225 239 240
|
syl3anc |
⊢ ( 𝜒 → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) |
242 |
241
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) |
243 |
207 13
|
syl |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑋 ∈ ℝ ) |
244 |
243
|
rexrd |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑋 ∈ ℝ* ) |
245 |
182
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
246 |
245 230
|
resubcld |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ∈ ℝ ) |
247 |
246
|
rexrd |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ∈ ℝ* ) |
248 |
|
simpr |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) |
249 |
|
ioogtlb |
⊢ ( ( 𝑋 ∈ ℝ* ∧ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ∈ ℝ* ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑋 < 𝑤 ) |
250 |
244 247 248 249
|
syl3anc |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑋 < 𝑤 ) |
251 |
243 227 230 250
|
ltadd1dd |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( 𝑋 + ( 𝑘 · 𝑇 ) ) < ( 𝑤 + ( 𝑘 · 𝑇 ) ) ) |
252 |
232 235 231 242 251
|
lelttrd |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑤 + ( 𝑘 · 𝑇 ) ) ) |
253 |
|
iooltub |
⊢ ( ( 𝑋 ∈ ℝ* ∧ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ∈ ℝ* ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑤 < ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) |
254 |
244 247 248 253
|
syl3anc |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑤 < ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) |
255 |
227 246 230 254
|
ltadd1dd |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( 𝑤 + ( 𝑘 · 𝑇 ) ) < ( ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) + ( 𝑘 · 𝑇 ) ) ) |
256 |
182
|
recnd |
⊢ ( 𝜒 → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℂ ) |
257 |
186
|
recnd |
⊢ ( 𝜒 → ( 𝑘 · 𝑇 ) ∈ ℂ ) |
258 |
256 257
|
npcand |
⊢ ( 𝜒 → ( ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) + ( 𝑘 · 𝑇 ) ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
259 |
258
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) + ( 𝑘 · 𝑇 ) ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
260 |
255 259
|
breqtrd |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( 𝑤 + ( 𝑘 · 𝑇 ) ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
261 |
224 226 231 252 260
|
eliood |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
262 |
218 261
|
sseldd |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ 𝐷 ) |
263 |
193
|
znegcld |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → - 𝑘 ∈ ℤ ) |
264 |
|
ovex |
⊢ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ V |
265 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑤 + ( 𝑘 · 𝑇 ) ) → ( 𝑥 ∈ 𝐷 ↔ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ 𝐷 ) ) |
266 |
265
|
3anbi2d |
⊢ ( 𝑥 = ( 𝑤 + ( 𝑘 · 𝑇 ) ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ - 𝑘 ∈ ℤ ) ↔ ( 𝜑 ∧ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ 𝐷 ∧ - 𝑘 ∈ ℤ ) ) ) |
267 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑤 + ( 𝑘 · 𝑇 ) ) → ( 𝑥 + ( - 𝑘 · 𝑇 ) ) = ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) + ( - 𝑘 · 𝑇 ) ) ) |
268 |
267
|
eleq1d |
⊢ ( 𝑥 = ( 𝑤 + ( 𝑘 · 𝑇 ) ) → ( ( 𝑥 + ( - 𝑘 · 𝑇 ) ) ∈ 𝐷 ↔ ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) + ( - 𝑘 · 𝑇 ) ) ∈ 𝐷 ) ) |
269 |
266 268
|
imbi12d |
⊢ ( 𝑥 = ( 𝑤 + ( 𝑘 · 𝑇 ) ) → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ - 𝑘 ∈ ℤ ) → ( 𝑥 + ( - 𝑘 · 𝑇 ) ) ∈ 𝐷 ) ↔ ( ( 𝜑 ∧ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ 𝐷 ∧ - 𝑘 ∈ ℤ ) → ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) + ( - 𝑘 · 𝑇 ) ) ∈ 𝐷 ) ) ) |
270 |
|
negex |
⊢ - 𝑘 ∈ V |
271 |
|
eleq1 |
⊢ ( 𝑗 = - 𝑘 → ( 𝑗 ∈ ℤ ↔ - 𝑘 ∈ ℤ ) ) |
272 |
271
|
3anbi3d |
⊢ ( 𝑗 = - 𝑘 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑗 ∈ ℤ ) ↔ ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ - 𝑘 ∈ ℤ ) ) ) |
273 |
|
oveq1 |
⊢ ( 𝑗 = - 𝑘 → ( 𝑗 · 𝑇 ) = ( - 𝑘 · 𝑇 ) ) |
274 |
273
|
oveq2d |
⊢ ( 𝑗 = - 𝑘 → ( 𝑥 + ( 𝑗 · 𝑇 ) ) = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) ) |
275 |
274
|
eleq1d |
⊢ ( 𝑗 = - 𝑘 → ( ( 𝑥 + ( 𝑗 · 𝑇 ) ) ∈ 𝐷 ↔ ( 𝑥 + ( - 𝑘 · 𝑇 ) ) ∈ 𝐷 ) ) |
276 |
272 275
|
imbi12d |
⊢ ( 𝑗 = - 𝑘 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑗 ∈ ℤ ) → ( 𝑥 + ( 𝑗 · 𝑇 ) ) ∈ 𝐷 ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ - 𝑘 ∈ ℤ ) → ( 𝑥 + ( - 𝑘 · 𝑇 ) ) ∈ 𝐷 ) ) ) |
277 |
|
eleq1 |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ ℤ ↔ 𝑗 ∈ ℤ ) ) |
278 |
277
|
3anbi3d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ ) ↔ ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑗 ∈ ℤ ) ) ) |
279 |
|
oveq1 |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 · 𝑇 ) = ( 𝑗 · 𝑇 ) ) |
280 |
279
|
oveq2d |
⊢ ( 𝑘 = 𝑗 → ( 𝑥 + ( 𝑘 · 𝑇 ) ) = ( 𝑥 + ( 𝑗 · 𝑇 ) ) ) |
281 |
280
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ 𝐷 ↔ ( 𝑥 + ( 𝑗 · 𝑇 ) ) ∈ 𝐷 ) ) |
282 |
278 281
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ ) → ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ 𝐷 ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑗 ∈ ℤ ) → ( 𝑥 + ( 𝑗 · 𝑇 ) ) ∈ 𝐷 ) ) ) |
283 |
282 9
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑗 ∈ ℤ ) → ( 𝑥 + ( 𝑗 · 𝑇 ) ) ∈ 𝐷 ) |
284 |
270 276 283
|
vtocl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ - 𝑘 ∈ ℤ ) → ( 𝑥 + ( - 𝑘 · 𝑇 ) ) ∈ 𝐷 ) |
285 |
264 269 284
|
vtocl |
⊢ ( ( 𝜑 ∧ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ 𝐷 ∧ - 𝑘 ∈ ℤ ) → ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) + ( - 𝑘 · 𝑇 ) ) ∈ 𝐷 ) |
286 |
207 262 263 285
|
syl3anc |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) + ( - 𝑘 · 𝑇 ) ) ∈ 𝐷 ) |
287 |
206 286
|
eqeltrd |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑤 ∈ 𝐷 ) |
288 |
287
|
ralrimiva |
⊢ ( 𝜒 → ∀ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) 𝑤 ∈ 𝐷 ) |
289 |
|
dfss3 |
⊢ ( ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ⊆ 𝐷 ↔ ∀ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) 𝑤 ∈ 𝐷 ) |
290 |
288 289
|
sylibr |
⊢ ( 𝜒 → ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ⊆ 𝐷 ) |
291 |
192 290
|
ssind |
⊢ ( 𝜒 → ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ⊆ ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ) |
292 |
|
ioosscn |
⊢ ( 𝑋 (,) +∞ ) ⊆ ℂ |
293 |
|
ssinss1 |
⊢ ( ( 𝑋 (,) +∞ ) ⊆ ℂ → ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ⊆ ℂ ) |
294 |
292 293
|
mp1i |
⊢ ( 𝜒 → ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ⊆ ℂ ) |
295 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
296 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) |
297 |
233
|
rexrd |
⊢ ( 𝜒 → 𝑋 ∈ ℝ* ) |
298 |
233
|
leidd |
⊢ ( 𝜒 → 𝑋 ≤ 𝑋 ) |
299 |
236
|
oveq1d |
⊢ ( 𝜒 → ( 𝑦 − ( 𝑘 · 𝑇 ) ) = ( ( 𝑋 + ( 𝑘 · 𝑇 ) ) − ( 𝑘 · 𝑇 ) ) ) |
300 |
233
|
recnd |
⊢ ( 𝜒 → 𝑋 ∈ ℂ ) |
301 |
300 257
|
pncand |
⊢ ( 𝜒 → ( ( 𝑋 + ( 𝑘 · 𝑇 ) ) − ( 𝑘 · 𝑇 ) ) = 𝑋 ) |
302 |
299 301
|
eqtr2d |
⊢ ( 𝜒 → 𝑋 = ( 𝑦 − ( 𝑘 · 𝑇 ) ) ) |
303 |
|
icossre |
⊢ ( ( ( 𝑄 ‘ 𝑖 ) ∈ ℝ ∧ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) → ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
304 |
222 225 303
|
syl2anc |
⊢ ( 𝜒 → ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
305 |
304 238
|
sseldd |
⊢ ( 𝜒 → 𝑦 ∈ ℝ ) |
306 |
|
icoltub |
⊢ ( ( ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ∧ 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑦 < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
307 |
223 225 238 306
|
syl3anc |
⊢ ( 𝜒 → 𝑦 < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
308 |
305 182 186 307
|
ltsub1dd |
⊢ ( 𝜒 → ( 𝑦 − ( 𝑘 · 𝑇 ) ) < ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) |
309 |
302 308
|
eqbrtrd |
⊢ ( 𝜒 → 𝑋 < ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) |
310 |
297 188 297 298 309
|
elicod |
⊢ ( 𝜒 → 𝑋 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) |
311 |
|
snunioo1 |
⊢ ( ( 𝑋 ∈ ℝ* ∧ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ∈ ℝ* ∧ 𝑋 < ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) → ( ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ∪ { 𝑋 } ) = ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) |
312 |
297 188 309 311
|
syl3anc |
⊢ ( 𝜒 → ( ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ∪ { 𝑋 } ) = ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) |
313 |
312
|
fveq2d |
⊢ ( 𝜒 → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ) ‘ ( ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ∪ { 𝑋 } ) ) = ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ) ‘ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) ) |
314 |
295
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
315 |
|
ovex |
⊢ ( 𝑋 (,) +∞ ) ∈ V |
316 |
315
|
inex1 |
⊢ ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∈ V |
317 |
|
snex |
⊢ { 𝑋 } ∈ V |
318 |
316 317
|
unex |
⊢ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ∈ V |
319 |
|
resttop |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ∈ V ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ∈ Top ) |
320 |
314 318 319
|
mp2an |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ∈ Top |
321 |
320
|
a1i |
⊢ ( 𝜒 → ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ∈ Top ) |
322 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
323 |
322
|
a1i |
⊢ ( 𝜒 → ( topGen ‘ ran (,) ) ∈ Top ) |
324 |
318
|
a1i |
⊢ ( 𝜒 → ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ∈ V ) |
325 |
|
iooretop |
⊢ ( -∞ (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ∈ ( topGen ‘ ran (,) ) |
326 |
325
|
a1i |
⊢ ( 𝜒 → ( -∞ (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ∈ ( topGen ‘ ran (,) ) ) |
327 |
|
elrestr |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ∈ V ∧ ( -∞ (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ∈ ( topGen ‘ ran (,) ) ) → ( ( -∞ (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ∩ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ) |
328 |
323 324 326 327
|
syl3anc |
⊢ ( 𝜒 → ( ( -∞ (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ∩ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ) |
329 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
330 |
329
|
a1i |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → -∞ ∈ ℝ* ) |
331 |
188
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ∈ ℝ* ) |
332 |
|
icossre |
⊢ ( ( 𝑋 ∈ ℝ ∧ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ∈ ℝ* ) → ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ⊆ ℝ ) |
333 |
233 188 332
|
syl2anc |
⊢ ( 𝜒 → ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ⊆ ℝ ) |
334 |
333
|
sselda |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑥 ∈ ℝ ) |
335 |
334
|
mnfltd |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → -∞ < 𝑥 ) |
336 |
297
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑋 ∈ ℝ* ) |
337 |
|
simpr |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑥 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) |
338 |
|
icoltub |
⊢ ( ( 𝑋 ∈ ℝ* ∧ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ∈ ℝ* ∧ 𝑥 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑥 < ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) |
339 |
336 331 337 338
|
syl3anc |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑥 < ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) |
340 |
330 331 334 335 339
|
eliood |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑥 ∈ ( -∞ (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) |
341 |
|
vsnid |
⊢ 𝑥 ∈ { 𝑥 } |
342 |
341
|
a1i |
⊢ ( 𝑥 = 𝑋 → 𝑥 ∈ { 𝑥 } ) |
343 |
|
sneq |
⊢ ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } ) |
344 |
342 343
|
eleqtrd |
⊢ ( 𝑥 = 𝑋 → 𝑥 ∈ { 𝑋 } ) |
345 |
|
elun2 |
⊢ ( 𝑥 ∈ { 𝑋 } → 𝑥 ∈ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) |
346 |
344 345
|
syl |
⊢ ( 𝑥 = 𝑋 → 𝑥 ∈ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) |
347 |
346
|
adantl |
⊢ ( ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) ∧ 𝑥 = 𝑋 ) → 𝑥 ∈ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) |
348 |
297
|
ad2antrr |
⊢ ( ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) ∧ ¬ 𝑥 = 𝑋 ) → 𝑋 ∈ ℝ* ) |
349 |
175
|
a1i |
⊢ ( ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) ∧ ¬ 𝑥 = 𝑋 ) → +∞ ∈ ℝ* ) |
350 |
334
|
adantr |
⊢ ( ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) ∧ ¬ 𝑥 = 𝑋 ) → 𝑥 ∈ ℝ ) |
351 |
233
|
ad2antrr |
⊢ ( ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) ∧ ¬ 𝑥 = 𝑋 ) → 𝑋 ∈ ℝ ) |
352 |
|
icogelb |
⊢ ( ( 𝑋 ∈ ℝ* ∧ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ∈ ℝ* ∧ 𝑥 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑋 ≤ 𝑥 ) |
353 |
336 331 337 352
|
syl3anc |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑋 ≤ 𝑥 ) |
354 |
353
|
adantr |
⊢ ( ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) ∧ ¬ 𝑥 = 𝑋 ) → 𝑋 ≤ 𝑥 ) |
355 |
|
neqne |
⊢ ( ¬ 𝑥 = 𝑋 → 𝑥 ≠ 𝑋 ) |
356 |
355
|
adantl |
⊢ ( ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) ∧ ¬ 𝑥 = 𝑋 ) → 𝑥 ≠ 𝑋 ) |
357 |
351 350 354 356
|
leneltd |
⊢ ( ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) ∧ ¬ 𝑥 = 𝑋 ) → 𝑋 < 𝑥 ) |
358 |
350
|
ltpnfd |
⊢ ( ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) ∧ ¬ 𝑥 = 𝑋 ) → 𝑥 < +∞ ) |
359 |
348 349 350 357 358
|
eliood |
⊢ ( ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) ∧ ¬ 𝑥 = 𝑋 ) → 𝑥 ∈ ( 𝑋 (,) +∞ ) ) |
360 |
183
|
zcnd |
⊢ ( 𝜒 → 𝑘 ∈ ℂ ) |
361 |
360 195
|
mulneg1d |
⊢ ( 𝜒 → ( - 𝑘 · 𝑇 ) = - ( 𝑘 · 𝑇 ) ) |
362 |
361
|
oveq2d |
⊢ ( 𝜒 → ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) + ( - 𝑘 · 𝑇 ) ) = ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) + - ( 𝑘 · 𝑇 ) ) ) |
363 |
362
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) + ( - 𝑘 · 𝑇 ) ) = ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) + - ( 𝑘 · 𝑇 ) ) ) |
364 |
|
ioosscn |
⊢ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ⊆ ℂ |
365 |
364
|
sseli |
⊢ ( 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) → 𝑤 ∈ ℂ ) |
366 |
365
|
adantl |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑤 ∈ ℂ ) |
367 |
257
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( 𝑘 · 𝑇 ) ∈ ℂ ) |
368 |
366 367
|
addcld |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ℂ ) |
369 |
368 367
|
negsubd |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) + - ( 𝑘 · 𝑇 ) ) = ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) − ( 𝑘 · 𝑇 ) ) ) |
370 |
366 367
|
pncand |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) − ( 𝑘 · 𝑇 ) ) = 𝑤 ) |
371 |
363 369 370
|
3eqtrrd |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑤 = ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) + ( - 𝑘 · 𝑇 ) ) ) |
372 |
186
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( 𝑘 · 𝑇 ) ∈ ℝ ) |
373 |
227 372
|
readdcld |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ℝ ) |
374 |
224 226 373 252 260
|
eliood |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
375 |
218 374
|
sseldd |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ 𝐷 ) |
376 |
271
|
3anbi3d |
⊢ ( 𝑗 = - 𝑘 → ( ( 𝜑 ∧ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ 𝐷 ∧ 𝑗 ∈ ℤ ) ↔ ( 𝜑 ∧ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ 𝐷 ∧ - 𝑘 ∈ ℤ ) ) ) |
377 |
273
|
oveq2d |
⊢ ( 𝑗 = - 𝑘 → ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) + ( 𝑗 · 𝑇 ) ) = ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) + ( - 𝑘 · 𝑇 ) ) ) |
378 |
377
|
eleq1d |
⊢ ( 𝑗 = - 𝑘 → ( ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) + ( 𝑗 · 𝑇 ) ) ∈ 𝐷 ↔ ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) + ( - 𝑘 · 𝑇 ) ) ∈ 𝐷 ) ) |
379 |
376 378
|
imbi12d |
⊢ ( 𝑗 = - 𝑘 → ( ( ( 𝜑 ∧ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ 𝐷 ∧ 𝑗 ∈ ℤ ) → ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) + ( 𝑗 · 𝑇 ) ) ∈ 𝐷 ) ↔ ( ( 𝜑 ∧ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ 𝐷 ∧ - 𝑘 ∈ ℤ ) → ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) + ( - 𝑘 · 𝑇 ) ) ∈ 𝐷 ) ) ) |
380 |
265
|
3anbi2d |
⊢ ( 𝑥 = ( 𝑤 + ( 𝑘 · 𝑇 ) ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑗 ∈ ℤ ) ↔ ( 𝜑 ∧ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ 𝐷 ∧ 𝑗 ∈ ℤ ) ) ) |
381 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑤 + ( 𝑘 · 𝑇 ) ) → ( 𝑥 + ( 𝑗 · 𝑇 ) ) = ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) + ( 𝑗 · 𝑇 ) ) ) |
382 |
381
|
eleq1d |
⊢ ( 𝑥 = ( 𝑤 + ( 𝑘 · 𝑇 ) ) → ( ( 𝑥 + ( 𝑗 · 𝑇 ) ) ∈ 𝐷 ↔ ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) + ( 𝑗 · 𝑇 ) ) ∈ 𝐷 ) ) |
383 |
380 382
|
imbi12d |
⊢ ( 𝑥 = ( 𝑤 + ( 𝑘 · 𝑇 ) ) → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑗 ∈ ℤ ) → ( 𝑥 + ( 𝑗 · 𝑇 ) ) ∈ 𝐷 ) ↔ ( ( 𝜑 ∧ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ 𝐷 ∧ 𝑗 ∈ ℤ ) → ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) + ( 𝑗 · 𝑇 ) ) ∈ 𝐷 ) ) ) |
384 |
264 383 283
|
vtocl |
⊢ ( ( 𝜑 ∧ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ 𝐷 ∧ 𝑗 ∈ ℤ ) → ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) + ( 𝑗 · 𝑇 ) ) ∈ 𝐷 ) |
385 |
270 379 384
|
vtocl |
⊢ ( ( 𝜑 ∧ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ 𝐷 ∧ - 𝑘 ∈ ℤ ) → ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) + ( - 𝑘 · 𝑇 ) ) ∈ 𝐷 ) |
386 |
207 375 263 385
|
syl3anc |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) + ( - 𝑘 · 𝑇 ) ) ∈ 𝐷 ) |
387 |
371 386
|
eqeltrd |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑤 ∈ 𝐷 ) |
388 |
387
|
ralrimiva |
⊢ ( 𝜒 → ∀ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) 𝑤 ∈ 𝐷 ) |
389 |
388 289
|
sylibr |
⊢ ( 𝜒 → ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ⊆ 𝐷 ) |
390 |
389
|
ad2antrr |
⊢ ( ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) ∧ ¬ 𝑥 = 𝑋 ) → ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ⊆ 𝐷 ) |
391 |
188
|
ad2antrr |
⊢ ( ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) ∧ ¬ 𝑥 = 𝑋 ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ∈ ℝ* ) |
392 |
339
|
adantr |
⊢ ( ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) ∧ ¬ 𝑥 = 𝑋 ) → 𝑥 < ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) |
393 |
348 391 350 357 392
|
eliood |
⊢ ( ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) ∧ ¬ 𝑥 = 𝑋 ) → 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) |
394 |
390 393
|
sseldd |
⊢ ( ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) ∧ ¬ 𝑥 = 𝑋 ) → 𝑥 ∈ 𝐷 ) |
395 |
359 394
|
elind |
⊢ ( ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) ∧ ¬ 𝑥 = 𝑋 ) → 𝑥 ∈ ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ) |
396 |
|
elun1 |
⊢ ( 𝑥 ∈ ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) → 𝑥 ∈ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) |
397 |
395 396
|
syl |
⊢ ( ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) ∧ ¬ 𝑥 = 𝑋 ) → 𝑥 ∈ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) |
398 |
347 397
|
pm2.61dan |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑥 ∈ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) |
399 |
340 398
|
elind |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑥 ∈ ( ( -∞ (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ∩ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ) |
400 |
297
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( ( -∞ (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ∩ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ) → 𝑋 ∈ ℝ* ) |
401 |
188
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( ( -∞ (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ∩ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ∈ ℝ* ) |
402 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( ( -∞ (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ∩ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) → 𝑥 ∈ ( -∞ (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) |
403 |
|
elioore |
⊢ ( 𝑥 ∈ ( -∞ (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) → 𝑥 ∈ ℝ ) |
404 |
402 403
|
syl |
⊢ ( 𝑥 ∈ ( ( -∞ (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ∩ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) → 𝑥 ∈ ℝ ) |
405 |
404
|
rexrd |
⊢ ( 𝑥 ∈ ( ( -∞ (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ∩ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) → 𝑥 ∈ ℝ* ) |
406 |
405
|
adantl |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( ( -∞ (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ∩ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ) → 𝑥 ∈ ℝ* ) |
407 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( ( -∞ (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ∩ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) → 𝑥 ∈ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) |
408 |
233
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑥 = 𝑋 ) → 𝑋 ∈ ℝ ) |
409 |
92
|
eqcomd |
⊢ ( 𝑥 = 𝑋 → 𝑋 = 𝑥 ) |
410 |
409
|
adantl |
⊢ ( ( 𝜒 ∧ 𝑥 = 𝑋 ) → 𝑋 = 𝑥 ) |
411 |
408 410
|
eqled |
⊢ ( ( 𝜒 ∧ 𝑥 = 𝑋 ) → 𝑋 ≤ 𝑥 ) |
412 |
411
|
adantlr |
⊢ ( ( ( 𝜒 ∧ 𝑥 ∈ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ∧ 𝑥 = 𝑋 ) → 𝑋 ≤ 𝑥 ) |
413 |
|
simpll |
⊢ ( ( ( 𝜒 ∧ 𝑥 ∈ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ∧ ¬ 𝑥 = 𝑋 ) → 𝜒 ) |
414 |
|
simplr |
⊢ ( ( ( 𝜒 ∧ 𝑥 ∈ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ∧ ¬ 𝑥 = 𝑋 ) → 𝑥 ∈ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) |
415 |
|
id |
⊢ ( ¬ 𝑥 = 𝑋 → ¬ 𝑥 = 𝑋 ) |
416 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝑋 } ↔ 𝑥 = 𝑋 ) |
417 |
415 416
|
sylnibr |
⊢ ( ¬ 𝑥 = 𝑋 → ¬ 𝑥 ∈ { 𝑋 } ) |
418 |
417
|
adantl |
⊢ ( ( ( 𝜒 ∧ 𝑥 ∈ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ∧ ¬ 𝑥 = 𝑋 ) → ¬ 𝑥 ∈ { 𝑋 } ) |
419 |
|
elunnel2 |
⊢ ( ( 𝑥 ∈ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ∧ ¬ 𝑥 ∈ { 𝑋 } ) → 𝑥 ∈ ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ) |
420 |
414 418 419
|
syl2anc |
⊢ ( ( ( 𝜒 ∧ 𝑥 ∈ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ∧ ¬ 𝑥 = 𝑋 ) → 𝑥 ∈ ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ) |
421 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) → 𝑥 ∈ ( 𝑋 (,) +∞ ) ) |
422 |
420 421
|
syl |
⊢ ( ( ( 𝜒 ∧ 𝑥 ∈ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ∧ ¬ 𝑥 = 𝑋 ) → 𝑥 ∈ ( 𝑋 (,) +∞ ) ) |
423 |
233
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 (,) +∞ ) ) → 𝑋 ∈ ℝ ) |
424 |
|
elioore |
⊢ ( 𝑥 ∈ ( 𝑋 (,) +∞ ) → 𝑥 ∈ ℝ ) |
425 |
424
|
adantl |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 (,) +∞ ) ) → 𝑥 ∈ ℝ ) |
426 |
297
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 (,) +∞ ) ) → 𝑋 ∈ ℝ* ) |
427 |
175
|
a1i |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 (,) +∞ ) ) → +∞ ∈ ℝ* ) |
428 |
|
simpr |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 (,) +∞ ) ) → 𝑥 ∈ ( 𝑋 (,) +∞ ) ) |
429 |
|
ioogtlb |
⊢ ( ( 𝑋 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑥 ∈ ( 𝑋 (,) +∞ ) ) → 𝑋 < 𝑥 ) |
430 |
426 427 428 429
|
syl3anc |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 (,) +∞ ) ) → 𝑋 < 𝑥 ) |
431 |
423 425 430
|
ltled |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 (,) +∞ ) ) → 𝑋 ≤ 𝑥 ) |
432 |
413 422 431
|
syl2anc |
⊢ ( ( ( 𝜒 ∧ 𝑥 ∈ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ∧ ¬ 𝑥 = 𝑋 ) → 𝑋 ≤ 𝑥 ) |
433 |
412 432
|
pm2.61dan |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) → 𝑋 ≤ 𝑥 ) |
434 |
407 433
|
sylan2 |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( ( -∞ (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ∩ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ) → 𝑋 ≤ 𝑥 ) |
435 |
329
|
a1i |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( -∞ (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → -∞ ∈ ℝ* ) |
436 |
188
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( -∞ (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ∈ ℝ* ) |
437 |
|
simpr |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( -∞ (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑥 ∈ ( -∞ (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) |
438 |
|
iooltub |
⊢ ( ( -∞ ∈ ℝ* ∧ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ∈ ℝ* ∧ 𝑥 ∈ ( -∞ (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑥 < ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) |
439 |
435 436 437 438
|
syl3anc |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( -∞ (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑥 < ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) |
440 |
402 439
|
sylan2 |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( ( -∞ (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ∩ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ) → 𝑥 < ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) |
441 |
400 401 406 434 440
|
elicod |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( ( -∞ (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ∩ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ) → 𝑥 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) |
442 |
399 441
|
impbida |
⊢ ( 𝜒 → ( 𝑥 ∈ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ↔ 𝑥 ∈ ( ( -∞ (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ∩ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ) ) |
443 |
442
|
eqrdv |
⊢ ( 𝜒 → ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) = ( ( -∞ (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ∩ ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ) |
444 |
|
ioossre |
⊢ ( 𝑋 (,) +∞ ) ⊆ ℝ |
445 |
|
ssinss1 |
⊢ ( ( 𝑋 (,) +∞ ) ⊆ ℝ → ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ⊆ ℝ ) |
446 |
444 445
|
mp1i |
⊢ ( 𝜒 → ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ⊆ ℝ ) |
447 |
233
|
snssd |
⊢ ( 𝜒 → { 𝑋 } ⊆ ℝ ) |
448 |
446 447
|
unssd |
⊢ ( 𝜒 → ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ⊆ ℝ ) |
449 |
|
eqid |
⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) |
450 |
295 449
|
rerest |
⊢ ( ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ⊆ ℝ → ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) = ( ( topGen ‘ ran (,) ) ↾t ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ) |
451 |
448 450
|
syl |
⊢ ( 𝜒 → ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) = ( ( topGen ‘ ran (,) ) ↾t ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ) |
452 |
328 443 451
|
3eltr4d |
⊢ ( 𝜒 → ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ) |
453 |
|
isopn3i |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ∈ Top ∧ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ) → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ) ‘ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) = ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) |
454 |
321 452 453
|
syl2anc |
⊢ ( 𝜒 → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ) ‘ ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) = ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) |
455 |
313 454
|
eqtr2d |
⊢ ( 𝜒 → ( 𝑋 [,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) = ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ) ‘ ( ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ∪ { 𝑋 } ) ) ) |
456 |
310 455
|
eleqtrd |
⊢ ( 𝜒 → 𝑋 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ∪ { 𝑋 } ) ) ) ‘ ( ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ∪ { 𝑋 } ) ) ) |
457 |
174 291 294 295 296 456
|
limcres |
⊢ ( 𝜒 → ( ( ( 𝐹 ↾ ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ) ↾ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) limℂ 𝑋 ) = ( ( 𝐹 ↾ ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ) limℂ 𝑋 ) ) |
458 |
291
|
resabs1d |
⊢ ( 𝜒 → ( ( 𝐹 ↾ ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ) ↾ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) = ( 𝐹 ↾ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) ) |
459 |
458
|
oveq1d |
⊢ ( 𝜒 → ( ( ( 𝐹 ↾ ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ) ↾ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) limℂ 𝑋 ) = ( ( 𝐹 ↾ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) limℂ 𝑋 ) ) |
460 |
169
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
461 |
8 460
|
fssd |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℂ ) |
462 |
214
|
feq2d |
⊢ ( 𝜑 → ( 𝐹 : dom 𝐹 ⟶ ℂ ↔ 𝐹 : 𝐷 ⟶ ℂ ) ) |
463 |
461 462
|
mpbird |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ℂ ) |
464 |
157 463
|
syl |
⊢ ( 𝜒 → 𝐹 : dom 𝐹 ⟶ ℂ ) |
465 |
464
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( ( 𝐹 ↾ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) limℂ 𝑋 ) ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
466 |
364
|
a1i |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( ( 𝐹 ↾ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) limℂ 𝑋 ) ) → ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ⊆ ℂ ) |
467 |
389 163
|
sseqtrrd |
⊢ ( 𝜒 → ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ⊆ dom 𝐹 ) |
468 |
467
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( ( 𝐹 ↾ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) limℂ 𝑋 ) ) → ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ⊆ dom 𝐹 ) |
469 |
257
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( ( 𝐹 ↾ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) limℂ 𝑋 ) ) → ( 𝑘 · 𝑇 ) ∈ ℂ ) |
470 |
|
eqid |
⊢ { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) 𝑧 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) } = { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) 𝑧 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) } |
471 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) ↔ 𝑤 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) ) |
472 |
471
|
rexbidv |
⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) 𝑧 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) ↔ ∃ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) 𝑤 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) ) |
473 |
472
|
elrab |
⊢ ( 𝑤 ∈ { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) 𝑧 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) } ↔ ( 𝑤 ∈ ℂ ∧ ∃ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) 𝑤 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) ) |
474 |
473
|
simprbi |
⊢ ( 𝑤 ∈ { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) 𝑧 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) } → ∃ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) 𝑤 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) |
475 |
474
|
adantl |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) 𝑧 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) } ) → ∃ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) 𝑤 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) |
476 |
|
nfv |
⊢ Ⅎ 𝑥 𝜒 |
477 |
|
nfre1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) 𝑧 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) |
478 |
|
nfcv |
⊢ Ⅎ 𝑥 ℂ |
479 |
477 478
|
nfrabw |
⊢ Ⅎ 𝑥 { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) 𝑧 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) } |
480 |
479
|
nfcri |
⊢ Ⅎ 𝑥 𝑤 ∈ { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) 𝑧 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) } |
481 |
476 480
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜒 ∧ 𝑤 ∈ { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) 𝑧 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) } ) |
482 |
|
nfv |
⊢ Ⅎ 𝑥 𝑤 ∈ 𝐷 |
483 |
|
simp3 |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ∧ 𝑤 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) → 𝑤 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) |
484 |
|
eleq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ↔ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) ) |
485 |
484
|
anbi2d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) ↔ ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) ) ) |
486 |
|
oveq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 + ( 𝑘 · 𝑇 ) ) = ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) |
487 |
486
|
eleq1d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ 𝐷 ↔ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ 𝐷 ) ) |
488 |
485 487
|
imbi12d |
⊢ ( 𝑤 = 𝑥 → ( ( ( 𝜒 ∧ 𝑤 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ 𝐷 ) ↔ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ 𝐷 ) ) ) |
489 |
488 262
|
chvarvv |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ 𝐷 ) |
490 |
489
|
3adant3 |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ∧ 𝑤 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) → ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ 𝐷 ) |
491 |
483 490
|
eqeltrd |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ∧ 𝑤 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) → 𝑤 ∈ 𝐷 ) |
492 |
491
|
3exp |
⊢ ( 𝜒 → ( 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) → ( 𝑤 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) → 𝑤 ∈ 𝐷 ) ) ) |
493 |
492
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) 𝑧 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) } ) → ( 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) → ( 𝑤 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) → 𝑤 ∈ 𝐷 ) ) ) |
494 |
481 482 493
|
rexlimd |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) 𝑧 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) } ) → ( ∃ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) 𝑤 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) → 𝑤 ∈ 𝐷 ) ) |
495 |
475 494
|
mpd |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) 𝑧 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) } ) → 𝑤 ∈ 𝐷 ) |
496 |
495
|
ralrimiva |
⊢ ( 𝜒 → ∀ 𝑤 ∈ { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) 𝑧 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) } 𝑤 ∈ 𝐷 ) |
497 |
|
dfss3 |
⊢ ( { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) 𝑧 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) } ⊆ 𝐷 ↔ ∀ 𝑤 ∈ { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) 𝑧 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) } 𝑤 ∈ 𝐷 ) |
498 |
496 497
|
sylibr |
⊢ ( 𝜒 → { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) 𝑧 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) } ⊆ 𝐷 ) |
499 |
498 163
|
sseqtrrd |
⊢ ( 𝜒 → { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) 𝑧 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) } ⊆ dom 𝐹 ) |
500 |
499
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( ( 𝐹 ↾ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) limℂ 𝑋 ) ) → { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) 𝑧 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) } ⊆ dom 𝐹 ) |
501 |
157
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝜑 ) |
502 |
389
|
sselda |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑥 ∈ 𝐷 ) |
503 |
183
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → 𝑘 ∈ ℤ ) |
504 |
501 502 503 10
|
syl3anc |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( 𝐹 ‘ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
505 |
504
|
adantlr |
⊢ ( ( ( 𝜒 ∧ 𝑤 ∈ ( ( 𝐹 ↾ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) limℂ 𝑋 ) ) ∧ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) → ( 𝐹 ‘ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
506 |
|
simpr |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( ( 𝐹 ↾ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) limℂ 𝑋 ) ) → 𝑤 ∈ ( ( 𝐹 ↾ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) limℂ 𝑋 ) ) |
507 |
465 466 468 469 470 500 505 506
|
limcperiod |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( ( 𝐹 ↾ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) limℂ 𝑋 ) ) → 𝑤 ∈ ( ( 𝐹 ↾ { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) 𝑧 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) } ) limℂ ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) |
508 |
258
|
eqcomd |
⊢ ( 𝜒 → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) + ( 𝑘 · 𝑇 ) ) ) |
509 |
236 508
|
oveq12d |
⊢ ( 𝜒 → ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑋 + ( 𝑘 · 𝑇 ) ) (,) ( ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) + ( 𝑘 · 𝑇 ) ) ) ) |
510 |
233 187 186
|
iooshift |
⊢ ( 𝜒 → ( ( 𝑋 + ( 𝑘 · 𝑇 ) ) (,) ( ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) + ( 𝑘 · 𝑇 ) ) ) = { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) 𝑧 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) } ) |
511 |
509 510
|
eqtr2d |
⊢ ( 𝜒 → { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) 𝑧 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) } = ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
512 |
511
|
reseq2d |
⊢ ( 𝜒 → ( 𝐹 ↾ { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) 𝑧 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) } ) = ( 𝐹 ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
513 |
512 237
|
oveq12d |
⊢ ( 𝜒 → ( ( 𝐹 ↾ { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) 𝑧 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) } ) limℂ ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) = ( ( 𝐹 ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑦 ) ) |
514 |
513
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( ( 𝐹 ↾ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) limℂ 𝑋 ) ) → ( ( 𝐹 ↾ { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) 𝑧 = ( 𝑥 + ( 𝑘 · 𝑇 ) ) } ) limℂ ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) = ( ( 𝐹 ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑦 ) ) |
515 |
507 514
|
eleqtrd |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( ( 𝐹 ↾ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) limℂ 𝑋 ) ) → 𝑤 ∈ ( ( 𝐹 ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑦 ) ) |
516 |
464
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( ( 𝐹 ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑦 ) ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
517 |
|
ioosscn |
⊢ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ |
518 |
517
|
a1i |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( ( 𝐹 ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑦 ) ) → ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ ) |
519 |
|
icogelb |
⊢ ( ( ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ∧ 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) ≤ 𝑦 ) |
520 |
223 225 238 519
|
syl3anc |
⊢ ( 𝜒 → ( 𝑄 ‘ 𝑖 ) ≤ 𝑦 ) |
521 |
|
iooss1 |
⊢ ( ( ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝑄 ‘ 𝑖 ) ≤ 𝑦 ) → ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
522 |
223 520 521
|
syl2anc |
⊢ ( 𝜒 → ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
523 |
522 217
|
sstrd |
⊢ ( 𝜒 → ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ 𝐷 ) |
524 |
523 163
|
sseqtrrd |
⊢ ( 𝜒 → ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom 𝐹 ) |
525 |
524
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( ( 𝐹 ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑦 ) ) → ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom 𝐹 ) |
526 |
360
|
negcld |
⊢ ( 𝜒 → - 𝑘 ∈ ℂ ) |
527 |
526 195
|
mulcld |
⊢ ( 𝜒 → ( - 𝑘 · 𝑇 ) ∈ ℂ ) |
528 |
527
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( ( 𝐹 ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑦 ) ) → ( - 𝑘 · 𝑇 ) ∈ ℂ ) |
529 |
|
eqid |
⊢ { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑧 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) } = { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑧 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) } |
530 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) ↔ 𝑤 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) ) ) |
531 |
530
|
rexbidv |
⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑧 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) ↔ ∃ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) ) ) |
532 |
531
|
elrab |
⊢ ( 𝑤 ∈ { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑧 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) } ↔ ( 𝑤 ∈ ℂ ∧ ∃ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) ) ) |
533 |
532
|
simprbi |
⊢ ( 𝑤 ∈ { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑧 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) } → ∃ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) ) |
534 |
533
|
adantl |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑧 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) } ) → ∃ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) ) |
535 |
|
nfre1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑧 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) |
536 |
535 478
|
nfrabw |
⊢ Ⅎ 𝑥 { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑧 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) } |
537 |
536
|
nfcri |
⊢ Ⅎ 𝑥 𝑤 ∈ { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑧 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) } |
538 |
476 537
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜒 ∧ 𝑤 ∈ { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑧 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) } ) |
539 |
|
simp3 |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑤 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) ) → 𝑤 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) ) |
540 |
157
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝜑 ) |
541 |
523
|
sselda |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ 𝐷 ) |
542 |
183
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑘 ∈ ℤ ) |
543 |
542
|
znegcld |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → - 𝑘 ∈ ℤ ) |
544 |
540 541 543 284
|
syl3anc |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑥 + ( - 𝑘 · 𝑇 ) ) ∈ 𝐷 ) |
545 |
544
|
3adant3 |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑤 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) ) → ( 𝑥 + ( - 𝑘 · 𝑇 ) ) ∈ 𝐷 ) |
546 |
539 545
|
eqeltrd |
⊢ ( ( 𝜒 ∧ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑤 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) ) → 𝑤 ∈ 𝐷 ) |
547 |
546
|
3exp |
⊢ ( 𝜒 → ( 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑤 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) → 𝑤 ∈ 𝐷 ) ) ) |
548 |
547
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑧 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) } ) → ( 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑤 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) → 𝑤 ∈ 𝐷 ) ) ) |
549 |
538 482 548
|
rexlimd |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑧 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) } ) → ( ∃ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) → 𝑤 ∈ 𝐷 ) ) |
550 |
534 549
|
mpd |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑧 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) } ) → 𝑤 ∈ 𝐷 ) |
551 |
550
|
ralrimiva |
⊢ ( 𝜒 → ∀ 𝑤 ∈ { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑧 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) } 𝑤 ∈ 𝐷 ) |
552 |
|
dfss3 |
⊢ ( { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑧 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) } ⊆ 𝐷 ↔ ∀ 𝑤 ∈ { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑧 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) } 𝑤 ∈ 𝐷 ) |
553 |
551 552
|
sylibr |
⊢ ( 𝜒 → { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑧 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) } ⊆ 𝐷 ) |
554 |
553 163
|
sseqtrrd |
⊢ ( 𝜒 → { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑧 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) } ⊆ dom 𝐹 ) |
555 |
554
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( ( 𝐹 ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑦 ) ) → { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑧 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) } ⊆ dom 𝐹 ) |
556 |
157
|
ad2antrr |
⊢ ( ( ( 𝜒 ∧ 𝑤 ∈ ( ( 𝐹 ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑦 ) ) ∧ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝜑 ) |
557 |
541
|
adantlr |
⊢ ( ( ( 𝜒 ∧ 𝑤 ∈ ( ( 𝐹 ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑦 ) ) ∧ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ 𝐷 ) |
558 |
543
|
adantlr |
⊢ ( ( ( 𝜒 ∧ 𝑤 ∈ ( ( 𝐹 ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑦 ) ) ∧ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → - 𝑘 ∈ ℤ ) |
559 |
274
|
fveq2d |
⊢ ( 𝑗 = - 𝑘 → ( 𝐹 ‘ ( 𝑥 + ( 𝑗 · 𝑇 ) ) ) = ( 𝐹 ‘ ( 𝑥 + ( - 𝑘 · 𝑇 ) ) ) ) |
560 |
559
|
eqeq1d |
⊢ ( 𝑗 = - 𝑘 → ( ( 𝐹 ‘ ( 𝑥 + ( 𝑗 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ ( 𝑥 + ( - 𝑘 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) ) |
561 |
272 560
|
imbi12d |
⊢ ( 𝑗 = - 𝑘 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑗 ∈ ℤ ) → ( 𝐹 ‘ ( 𝑥 + ( 𝑗 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ - 𝑘 ∈ ℤ ) → ( 𝐹 ‘ ( 𝑥 + ( - 𝑘 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) ) ) |
562 |
280
|
fveq2d |
⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) = ( 𝐹 ‘ ( 𝑥 + ( 𝑗 · 𝑇 ) ) ) ) |
563 |
562
|
eqeq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ ( 𝑥 + ( 𝑗 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) ) |
564 |
278 563
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ ) → ( 𝐹 ‘ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑗 ∈ ℤ ) → ( 𝐹 ‘ ( 𝑥 + ( 𝑗 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) ) ) |
565 |
564 10
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑗 ∈ ℤ ) → ( 𝐹 ‘ ( 𝑥 + ( 𝑗 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
566 |
270 561 565
|
vtocl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ - 𝑘 ∈ ℤ ) → ( 𝐹 ‘ ( 𝑥 + ( - 𝑘 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
567 |
556 557 558 566
|
syl3anc |
⊢ ( ( ( 𝜒 ∧ 𝑤 ∈ ( ( 𝐹 ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑦 ) ) ∧ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐹 ‘ ( 𝑥 + ( - 𝑘 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
568 |
|
simpr |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( ( 𝐹 ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑦 ) ) → 𝑤 ∈ ( ( 𝐹 ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑦 ) ) |
569 |
516 518 525 528 529 555 567 568
|
limcperiod |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( ( 𝐹 ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑦 ) ) → 𝑤 ∈ ( ( 𝐹 ↾ { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑧 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) } ) limℂ ( 𝑦 + ( - 𝑘 · 𝑇 ) ) ) ) |
570 |
361
|
oveq2d |
⊢ ( 𝜒 → ( 𝑦 + ( - 𝑘 · 𝑇 ) ) = ( 𝑦 + - ( 𝑘 · 𝑇 ) ) ) |
571 |
305
|
recnd |
⊢ ( 𝜒 → 𝑦 ∈ ℂ ) |
572 |
571 257
|
negsubd |
⊢ ( 𝜒 → ( 𝑦 + - ( 𝑘 · 𝑇 ) ) = ( 𝑦 − ( 𝑘 · 𝑇 ) ) ) |
573 |
302
|
eqcomd |
⊢ ( 𝜒 → ( 𝑦 − ( 𝑘 · 𝑇 ) ) = 𝑋 ) |
574 |
570 572 573
|
3eqtrd |
⊢ ( 𝜒 → ( 𝑦 + ( - 𝑘 · 𝑇 ) ) = 𝑋 ) |
575 |
574
|
eqcomd |
⊢ ( 𝜒 → 𝑋 = ( 𝑦 + ( - 𝑘 · 𝑇 ) ) ) |
576 |
361
|
oveq2d |
⊢ ( 𝜒 → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( - 𝑘 · 𝑇 ) ) = ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + - ( 𝑘 · 𝑇 ) ) ) |
577 |
256 257
|
negsubd |
⊢ ( 𝜒 → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + - ( 𝑘 · 𝑇 ) ) = ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) |
578 |
576 577
|
eqtr2d |
⊢ ( 𝜒 → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) = ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( - 𝑘 · 𝑇 ) ) ) |
579 |
575 578
|
oveq12d |
⊢ ( 𝜒 → ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) = ( ( 𝑦 + ( - 𝑘 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( - 𝑘 · 𝑇 ) ) ) ) |
580 |
184
|
renegcld |
⊢ ( 𝜒 → - 𝑘 ∈ ℝ ) |
581 |
580 185
|
remulcld |
⊢ ( 𝜒 → ( - 𝑘 · 𝑇 ) ∈ ℝ ) |
582 |
305 182 581
|
iooshift |
⊢ ( 𝜒 → ( ( 𝑦 + ( - 𝑘 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( - 𝑘 · 𝑇 ) ) ) = { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑧 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) } ) |
583 |
579 582
|
eqtr2d |
⊢ ( 𝜒 → { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑧 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) } = ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) |
584 |
583
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( ( 𝐹 ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑦 ) ) → { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑧 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) } = ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) |
585 |
584
|
reseq2d |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( ( 𝐹 ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑦 ) ) → ( 𝐹 ↾ { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑧 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) } ) = ( 𝐹 ↾ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) ) |
586 |
574
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( ( 𝐹 ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑦 ) ) → ( 𝑦 + ( - 𝑘 · 𝑇 ) ) = 𝑋 ) |
587 |
585 586
|
oveq12d |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( ( 𝐹 ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑦 ) ) → ( ( 𝐹 ↾ { 𝑧 ∈ ℂ ∣ ∃ 𝑥 ∈ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑧 = ( 𝑥 + ( - 𝑘 · 𝑇 ) ) } ) limℂ ( 𝑦 + ( - 𝑘 · 𝑇 ) ) ) = ( ( 𝐹 ↾ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) limℂ 𝑋 ) ) |
588 |
569 587
|
eleqtrd |
⊢ ( ( 𝜒 ∧ 𝑤 ∈ ( ( 𝐹 ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑦 ) ) → 𝑤 ∈ ( ( 𝐹 ↾ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) limℂ 𝑋 ) ) |
589 |
515 588
|
impbida |
⊢ ( 𝜒 → ( 𝑤 ∈ ( ( 𝐹 ↾ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) limℂ 𝑋 ) ↔ 𝑤 ∈ ( ( 𝐹 ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑦 ) ) ) |
590 |
589
|
eqrdv |
⊢ ( 𝜒 → ( ( 𝐹 ↾ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) limℂ 𝑋 ) = ( ( 𝐹 ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑦 ) ) |
591 |
459 590
|
eqtrd |
⊢ ( 𝜒 → ( ( ( 𝐹 ↾ ( ( 𝑋 (,) +∞ ) ∩ 𝐷 ) ) ↾ ( 𝑋 (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − ( 𝑘 · 𝑇 ) ) ) ) limℂ 𝑋 ) = ( ( 𝐹 ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑦 ) ) |
592 |
167 457 591
|
3eqtr2d |
⊢ ( 𝜒 → ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) = ( ( 𝐹 ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑦 ) ) |
593 |
157 177 78
|
syl2anc |
⊢ ( 𝜒 → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
594 |
157 177 11
|
syl2anc |
⊢ ( 𝜒 → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
595 |
157 177 12
|
syl2anc |
⊢ ( 𝜒 → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
596 |
|
eqid |
⊢ if ( 𝑦 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑦 ) ) = if ( 𝑦 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑦 ) ) |
597 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
598 |
222 182 593 594 595 305 182 307 522 596 597
|
fourierdlem32 |
⊢ ( 𝜒 → if ( 𝑦 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑦 ) ) ∈ ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑦 ) ) |
599 |
522
|
resabs1d |
⊢ ( 𝜒 → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝐹 ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
600 |
599
|
oveq1d |
⊢ ( 𝜒 → ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑦 ) = ( ( 𝐹 ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑦 ) ) |
601 |
598 600
|
eleqtrd |
⊢ ( 𝜒 → if ( 𝑦 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑦 ) ) ∈ ( ( 𝐹 ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑦 ) ) |
602 |
|
ne0i |
⊢ ( if ( 𝑦 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑦 ) ) ∈ ( ( 𝐹 ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑦 ) → ( ( 𝐹 ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑦 ) ≠ ∅ ) |
603 |
601 602
|
syl |
⊢ ( 𝜒 → ( ( 𝐹 ↾ ( 𝑦 (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑦 ) ≠ ∅ ) |
604 |
592 603
|
eqnetrd |
⊢ ( 𝜒 → ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ≠ ∅ ) |
605 |
16 604
|
sylbir |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) → ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ≠ ∅ ) |
606 |
152 153 154 605
|
syl21anc |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) → ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ≠ ∅ ) |
607 |
606
|
3exp |
⊢ ( 𝜑 → ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑘 ∈ ℤ ) → ( ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) → ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ≠ ∅ ) ) ) |
608 |
607
|
adantr |
⊢ ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑘 ∈ ℤ ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) → ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑘 ∈ ℤ ) → ( ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) → ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ≠ ∅ ) ) ) |
609 |
143 148 608
|
rexlim2d |
⊢ ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑘 ∈ ℤ ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) → ( ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑘 ∈ ℤ ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) → ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ≠ ∅ ) ) |
610 |
140 609
|
mpd |
⊢ ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑘 ∈ ℤ ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) → ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ≠ ∅ ) |
611 |
133 139 610
|
vtocl |
⊢ ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑘 ∈ ℤ ( ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ ( ( 𝐸 ‘ 𝑋 ) − 𝑇 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) → ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ≠ ∅ ) |
612 |
17 132 611
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) = 𝐵 ) → ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ≠ ∅ ) |
613 |
|
iocssre |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐴 (,] 𝐵 ) ⊆ ℝ ) |
614 |
63 2 613
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 (,] 𝐵 ) ⊆ ℝ ) |
615 |
|
ovex |
⊢ ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ∈ V |
616 |
14
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ∈ V ) → ( 𝑍 ‘ 𝑥 ) = ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) |
617 |
615 616
|
mpan2 |
⊢ ( 𝑥 ∈ ℝ → ( 𝑍 ‘ 𝑥 ) = ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) |
618 |
617
|
oveq2d |
⊢ ( 𝑥 ∈ ℝ → ( 𝑥 + ( 𝑍 ‘ 𝑥 ) ) = ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) |
619 |
618
|
mpteq2ia |
⊢ ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( 𝑍 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) |
620 |
15 619
|
eqtri |
⊢ 𝐸 = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) |
621 |
1 2 3 5 620
|
fourierdlem4 |
⊢ ( 𝜑 → 𝐸 : ℝ ⟶ ( 𝐴 (,] 𝐵 ) ) |
622 |
621 13
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) |
623 |
614 622
|
sseldd |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑋 ) ∈ ℝ ) |
624 |
623
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) → ( 𝐸 ‘ 𝑋 ) ∈ ℝ ) |
625 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) → 𝜑 ) |
626 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ran 𝑄 ) → ( 𝐸 ‘ 𝑋 ) ∈ ran 𝑄 ) |
627 |
|
ffn |
⊢ ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ → 𝑄 Fn ( 0 ... 𝑀 ) ) |
628 |
48 627
|
syl |
⊢ ( 𝜑 → 𝑄 Fn ( 0 ... 𝑀 ) ) |
629 |
628
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ran 𝑄 ) → 𝑄 Fn ( 0 ... 𝑀 ) ) |
630 |
|
fvelrnb |
⊢ ( 𝑄 Fn ( 0 ... 𝑀 ) → ( ( 𝐸 ‘ 𝑋 ) ∈ ran 𝑄 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) ) |
631 |
629 630
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ran 𝑄 ) → ( ( 𝐸 ‘ 𝑋 ) ∈ ran 𝑄 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) ) |
632 |
626 631
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ran 𝑄 ) → ∃ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) |
633 |
|
1zzd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → 1 ∈ ℤ ) |
634 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℤ ) |
635 |
634
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → 𝑗 ∈ ℤ ) |
636 |
635
|
zred |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → 𝑗 ∈ ℝ ) |
637 |
|
elfzle1 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 0 ≤ 𝑗 ) |
638 |
637
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → 0 ≤ 𝑗 ) |
639 |
|
id |
⊢ ( ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) → ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) |
640 |
639
|
eqcomd |
⊢ ( ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) → ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ 𝑗 ) ) |
641 |
640
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) ∧ 𝑗 = 0 ) → ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ 𝑗 ) ) |
642 |
|
fveq2 |
⊢ ( 𝑗 = 0 → ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ 0 ) ) |
643 |
642
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) ∧ 𝑗 = 0 ) → ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ 0 ) ) |
644 |
45
|
simprld |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ) |
645 |
644
|
simpld |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = 𝐴 ) |
646 |
645
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) ∧ 𝑗 = 0 ) → ( 𝑄 ‘ 0 ) = 𝐴 ) |
647 |
641 643 646
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) ∧ 𝑗 = 0 ) → ( 𝐸 ‘ 𝑋 ) = 𝐴 ) |
648 |
647
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) ∧ 𝑗 = 0 ) → ( 𝐸 ‘ 𝑋 ) = 𝐴 ) |
649 |
648
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) ∧ 𝑗 = 0 ) → ( 𝐸 ‘ 𝑋 ) = 𝐴 ) |
650 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) → 𝐴 ∈ ℝ ) |
651 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) → 𝐴 ∈ ℝ* ) |
652 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
653 |
652
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
654 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) → ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) |
655 |
|
iocgtlb |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) → 𝐴 < ( 𝐸 ‘ 𝑋 ) ) |
656 |
651 653 654 655
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) → 𝐴 < ( 𝐸 ‘ 𝑋 ) ) |
657 |
650 656
|
gtned |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) → ( 𝐸 ‘ 𝑋 ) ≠ 𝐴 ) |
658 |
657
|
neneqd |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) → ¬ ( 𝐸 ‘ 𝑋 ) = 𝐴 ) |
659 |
658
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) ∧ 𝑗 = 0 ) → ¬ ( 𝐸 ‘ 𝑋 ) = 𝐴 ) |
660 |
649 659
|
pm2.65da |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → ¬ 𝑗 = 0 ) |
661 |
660
|
neqned |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → 𝑗 ≠ 0 ) |
662 |
636 638 661
|
ne0gt0d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → 0 < 𝑗 ) |
663 |
|
0zd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → 0 ∈ ℤ ) |
664 |
|
zltp1le |
⊢ ( ( 0 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 0 < 𝑗 ↔ ( 0 + 1 ) ≤ 𝑗 ) ) |
665 |
663 635 664
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → ( 0 < 𝑗 ↔ ( 0 + 1 ) ≤ 𝑗 ) ) |
666 |
662 665
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → ( 0 + 1 ) ≤ 𝑗 ) |
667 |
82 666
|
eqbrtrid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → 1 ≤ 𝑗 ) |
668 |
|
eluz2 |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 1 ) ↔ ( 1 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 1 ≤ 𝑗 ) ) |
669 |
633 635 667 668
|
syl3anbrc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) |
670 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
671 |
669 670
|
eleqtrrdi |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → 𝑗 ∈ ℕ ) |
672 |
|
nnm1nn0 |
⊢ ( 𝑗 ∈ ℕ → ( 𝑗 − 1 ) ∈ ℕ0 ) |
673 |
671 672
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → ( 𝑗 − 1 ) ∈ ℕ0 ) |
674 |
673 50
|
eleqtrdi |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → ( 𝑗 − 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
675 |
19
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → 𝑀 ∈ ℤ ) |
676 |
|
peano2zm |
⊢ ( 𝑗 ∈ ℤ → ( 𝑗 − 1 ) ∈ ℤ ) |
677 |
634 676
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑗 − 1 ) ∈ ℤ ) |
678 |
677
|
zred |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑗 − 1 ) ∈ ℝ ) |
679 |
634
|
zred |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℝ ) |
680 |
|
elfzel2 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑀 ∈ ℤ ) |
681 |
680
|
zred |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑀 ∈ ℝ ) |
682 |
679
|
ltm1d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑗 − 1 ) < 𝑗 ) |
683 |
|
elfzle2 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ≤ 𝑀 ) |
684 |
678 679 681 682 683
|
ltletrd |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑗 − 1 ) < 𝑀 ) |
685 |
684
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → ( 𝑗 − 1 ) < 𝑀 ) |
686 |
|
elfzo2 |
⊢ ( ( 𝑗 − 1 ) ∈ ( 0 ..^ 𝑀 ) ↔ ( ( 𝑗 − 1 ) ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑀 ∈ ℤ ∧ ( 𝑗 − 1 ) < 𝑀 ) ) |
687 |
674 675 685 686
|
syl3anbrc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → ( 𝑗 − 1 ) ∈ ( 0 ..^ 𝑀 ) ) |
688 |
48
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
689 |
635 676
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → ( 𝑗 − 1 ) ∈ ℤ ) |
690 |
673
|
nn0ge0d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → 0 ≤ ( 𝑗 − 1 ) ) |
691 |
678 681 684
|
ltled |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑗 − 1 ) ≤ 𝑀 ) |
692 |
691
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → ( 𝑗 − 1 ) ≤ 𝑀 ) |
693 |
663 675 689 690 692
|
elfzd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → ( 𝑗 − 1 ) ∈ ( 0 ... 𝑀 ) ) |
694 |
688 693
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → ( 𝑄 ‘ ( 𝑗 − 1 ) ) ∈ ℝ ) |
695 |
694
|
rexrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → ( 𝑄 ‘ ( 𝑗 − 1 ) ) ∈ ℝ* ) |
696 |
48
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑗 ) ∈ ℝ ) |
697 |
696
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑗 ) ∈ ℝ* ) |
698 |
697
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑗 ) ∈ ℝ* ) |
699 |
698
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → ( 𝑄 ‘ 𝑗 ) ∈ ℝ* ) |
700 |
614
|
sselda |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) → ( 𝐸 ‘ 𝑋 ) ∈ ℝ ) |
701 |
700
|
rexrd |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) → ( 𝐸 ‘ 𝑋 ) ∈ ℝ* ) |
702 |
701
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → ( 𝐸 ‘ 𝑋 ) ∈ ℝ* ) |
703 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → 𝜑 ) |
704 |
|
ovex |
⊢ ( 𝑗 − 1 ) ∈ V |
705 |
|
eleq1 |
⊢ ( 𝑖 = ( 𝑗 − 1 ) → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↔ ( 𝑗 − 1 ) ∈ ( 0 ..^ 𝑀 ) ) ) |
706 |
705
|
anbi2d |
⊢ ( 𝑖 = ( 𝑗 − 1 ) → ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ↔ ( 𝜑 ∧ ( 𝑗 − 1 ) ∈ ( 0 ..^ 𝑀 ) ) ) ) |
707 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝑗 − 1 ) → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ ( 𝑗 − 1 ) ) ) |
708 |
|
oveq1 |
⊢ ( 𝑖 = ( 𝑗 − 1 ) → ( 𝑖 + 1 ) = ( ( 𝑗 − 1 ) + 1 ) ) |
709 |
708
|
fveq2d |
⊢ ( 𝑖 = ( 𝑗 − 1 ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑄 ‘ ( ( 𝑗 − 1 ) + 1 ) ) ) |
710 |
707 709
|
breq12d |
⊢ ( 𝑖 = ( 𝑗 − 1 ) → ( ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ↔ ( 𝑄 ‘ ( 𝑗 − 1 ) ) < ( 𝑄 ‘ ( ( 𝑗 − 1 ) + 1 ) ) ) ) |
711 |
706 710
|
imbi12d |
⊢ ( 𝑖 = ( 𝑗 − 1 ) → ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ( ( 𝜑 ∧ ( 𝑗 − 1 ) ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑗 − 1 ) ) < ( 𝑄 ‘ ( ( 𝑗 − 1 ) + 1 ) ) ) ) ) |
712 |
704 711 78
|
vtocl |
⊢ ( ( 𝜑 ∧ ( 𝑗 − 1 ) ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑗 − 1 ) ) < ( 𝑄 ‘ ( ( 𝑗 − 1 ) + 1 ) ) ) |
713 |
703 687 712
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → ( 𝑄 ‘ ( 𝑗 − 1 ) ) < ( 𝑄 ‘ ( ( 𝑗 − 1 ) + 1 ) ) ) |
714 |
634
|
zcnd |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℂ ) |
715 |
|
1cnd |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 1 ∈ ℂ ) |
716 |
714 715
|
npcand |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 𝑗 − 1 ) + 1 ) = 𝑗 ) |
717 |
716
|
eqcomd |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 = ( ( 𝑗 − 1 ) + 1 ) ) |
718 |
717
|
fveq2d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( ( 𝑗 − 1 ) + 1 ) ) ) |
719 |
718
|
eqcomd |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑄 ‘ ( ( 𝑗 − 1 ) + 1 ) ) = ( 𝑄 ‘ 𝑗 ) ) |
720 |
719
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → ( 𝑄 ‘ ( ( 𝑗 − 1 ) + 1 ) ) = ( 𝑄 ‘ 𝑗 ) ) |
721 |
713 720
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → ( 𝑄 ‘ ( 𝑗 − 1 ) ) < ( 𝑄 ‘ 𝑗 ) ) |
722 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) |
723 |
721 722
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → ( 𝑄 ‘ ( 𝑗 − 1 ) ) < ( 𝐸 ‘ 𝑋 ) ) |
724 |
623
|
leidd |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑋 ) ≤ ( 𝐸 ‘ 𝑋 ) ) |
725 |
724
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → ( 𝐸 ‘ 𝑋 ) ≤ ( 𝐸 ‘ 𝑋 ) ) |
726 |
640
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ 𝑗 ) ) |
727 |
725 726
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → ( 𝐸 ‘ 𝑋 ) ≤ ( 𝑄 ‘ 𝑗 ) ) |
728 |
727
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → ( 𝐸 ‘ 𝑋 ) ≤ ( 𝑄 ‘ 𝑗 ) ) |
729 |
695 699 702 723 728
|
eliocd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ ( 𝑗 − 1 ) ) (,] ( 𝑄 ‘ 𝑗 ) ) ) |
730 |
718
|
oveq2d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 𝑄 ‘ ( 𝑗 − 1 ) ) (,] ( 𝑄 ‘ 𝑗 ) ) = ( ( 𝑄 ‘ ( 𝑗 − 1 ) ) (,] ( 𝑄 ‘ ( ( 𝑗 − 1 ) + 1 ) ) ) ) |
731 |
730
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → ( ( 𝑄 ‘ ( 𝑗 − 1 ) ) (,] ( 𝑄 ‘ 𝑗 ) ) = ( ( 𝑄 ‘ ( 𝑗 − 1 ) ) (,] ( 𝑄 ‘ ( ( 𝑗 − 1 ) + 1 ) ) ) ) |
732 |
729 731
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ ( 𝑗 − 1 ) ) (,] ( 𝑄 ‘ ( ( 𝑗 − 1 ) + 1 ) ) ) ) |
733 |
707 709
|
oveq12d |
⊢ ( 𝑖 = ( 𝑗 − 1 ) → ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑄 ‘ ( 𝑗 − 1 ) ) (,] ( 𝑄 ‘ ( ( 𝑗 − 1 ) + 1 ) ) ) ) |
734 |
733
|
eleq2d |
⊢ ( 𝑖 = ( 𝑗 − 1 ) → ( ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ ( 𝑗 − 1 ) ) (,] ( 𝑄 ‘ ( ( 𝑗 − 1 ) + 1 ) ) ) ) ) |
735 |
734
|
rspcev |
⊢ ( ( ( 𝑗 − 1 ) ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ ( 𝑗 − 1 ) ) (,] ( 𝑄 ‘ ( ( 𝑗 − 1 ) + 1 ) ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
736 |
687 732 735
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
737 |
736
|
ex |
⊢ ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
738 |
737
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ran 𝑄 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
739 |
738
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ran 𝑄 ) → ( ∃ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑋 ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
740 |
632 739
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ran 𝑄 ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
741 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ ¬ ( 𝐸 ‘ 𝑋 ) ∈ ran 𝑄 ) → 𝑀 ∈ ℕ ) |
742 |
48
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ ¬ ( 𝐸 ‘ 𝑋 ) ∈ ran 𝑄 ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
743 |
|
iocssicc |
⊢ ( 𝐴 (,] 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
744 |
645
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = ( 𝑄 ‘ 0 ) ) |
745 |
644
|
simprd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) = 𝐵 ) |
746 |
745
|
eqcomd |
⊢ ( 𝜑 → 𝐵 = ( 𝑄 ‘ 𝑀 ) ) |
747 |
744 746
|
oveq12d |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) = ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) |
748 |
743 747
|
sseqtrid |
⊢ ( 𝜑 → ( 𝐴 (,] 𝐵 ) ⊆ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) |
749 |
748
|
sselda |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) → ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) |
750 |
749
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ ¬ ( 𝐸 ‘ 𝑋 ) ∈ ran 𝑄 ) → ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) |
751 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ ¬ ( 𝐸 ‘ 𝑋 ) ∈ ran 𝑄 ) → ¬ ( 𝐸 ‘ 𝑋 ) ∈ ran 𝑄 ) |
752 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ 𝑗 ) ) |
753 |
752
|
breq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝑄 ‘ 𝑘 ) < ( 𝐸 ‘ 𝑋 ) ↔ ( 𝑄 ‘ 𝑗 ) < ( 𝐸 ‘ 𝑋 ) ) ) |
754 |
753
|
cbvrabv |
⊢ { 𝑘 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑘 ) < ( 𝐸 ‘ 𝑋 ) } = { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑗 ) < ( 𝐸 ‘ 𝑋 ) } |
755 |
754
|
supeq1i |
⊢ sup ( { 𝑘 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑘 ) < ( 𝐸 ‘ 𝑋 ) } , ℝ , < ) = sup ( { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑗 ) < ( 𝐸 ‘ 𝑋 ) } , ℝ , < ) |
756 |
741 742 750 751 755
|
fourierdlem25 |
⊢ ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ ¬ ( 𝐸 ‘ 𝑋 ) ∈ ran 𝑄 ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
757 |
|
ioossioc |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
758 |
757
|
sseli |
⊢ ( ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
759 |
758
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ ¬ ( 𝐸 ‘ 𝑋 ) ∈ ran 𝑄 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
760 |
759
|
reximdva |
⊢ ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ ¬ ( 𝐸 ‘ 𝑋 ) ∈ ran 𝑄 ) → ( ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
761 |
756 760
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) ∧ ¬ ( 𝐸 ‘ 𝑋 ) ∈ ran 𝑄 ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
762 |
740 761
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( 𝐴 (,] 𝐵 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
763 |
622 762
|
mpdan |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
764 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑗 ) ) |
765 |
|
oveq1 |
⊢ ( 𝑖 = 𝑗 → ( 𝑖 + 1 ) = ( 𝑗 + 1 ) ) |
766 |
765
|
fveq2d |
⊢ ( 𝑖 = 𝑗 → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) |
767 |
764 766
|
oveq12d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) |
768 |
767
|
eleq2d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ) |
769 |
768
|
cbvrexvw |
⊢ ( ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ∃ 𝑗 ∈ ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) |
770 |
763 769
|
sylib |
⊢ ( 𝜑 → ∃ 𝑗 ∈ ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) |
771 |
770
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) → ∃ 𝑗 ∈ ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) |
772 |
|
elfzonn0 |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → 𝑗 ∈ ℕ0 ) |
773 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
774 |
773
|
a1i |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → 1 ∈ ℕ0 ) |
775 |
772 774
|
nn0addcld |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → ( 𝑗 + 1 ) ∈ ℕ0 ) |
776 |
775 50
|
eleqtrdi |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
777 |
776
|
adantr |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
778 |
777
|
3ad2antl2 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
779 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → 𝑀 ∈ ℤ ) |
780 |
779
|
3ad2antl1 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → 𝑀 ∈ ℤ ) |
781 |
772
|
nn0red |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → 𝑗 ∈ ℝ ) |
782 |
781
|
adantr |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → 𝑗 ∈ ℝ ) |
783 |
782
|
3ad2antl2 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → 𝑗 ∈ ℝ ) |
784 |
|
1red |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → 1 ∈ ℝ ) |
785 |
783 784
|
readdcld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝑗 + 1 ) ∈ ℝ ) |
786 |
780
|
zred |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → 𝑀 ∈ ℝ ) |
787 |
|
elfzop1le2 |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → ( 𝑗 + 1 ) ≤ 𝑀 ) |
788 |
787
|
adantr |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝑗 + 1 ) ≤ 𝑀 ) |
789 |
788
|
3ad2antl2 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝑗 + 1 ) ≤ 𝑀 ) |
790 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ∧ 𝑀 = ( 𝑗 + 1 ) ) → ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) |
791 |
|
fveq2 |
⊢ ( 𝑀 = ( 𝑗 + 1 ) → ( 𝑄 ‘ 𝑀 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) |
792 |
791
|
eqcomd |
⊢ ( 𝑀 = ( 𝑗 + 1 ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑄 ‘ 𝑀 ) ) |
793 |
792
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ∧ 𝑀 = ( 𝑗 + 1 ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑄 ‘ 𝑀 ) ) |
794 |
745
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ∧ 𝑀 = ( 𝑗 + 1 ) ) → ( 𝑄 ‘ 𝑀 ) = 𝐵 ) |
795 |
790 793 794
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ∧ 𝑀 = ( 𝑗 + 1 ) ) → ( 𝐸 ‘ 𝑋 ) = 𝐵 ) |
796 |
795
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ∧ 𝑀 = ( 𝑗 + 1 ) ) → ( 𝐸 ‘ 𝑋 ) = 𝐵 ) |
797 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ∧ 𝑀 = ( 𝑗 + 1 ) ) → ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) |
798 |
797
|
neneqd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ∧ 𝑀 = ( 𝑗 + 1 ) ) → ¬ ( 𝐸 ‘ 𝑋 ) = 𝐵 ) |
799 |
796 798
|
pm2.65da |
⊢ ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ¬ 𝑀 = ( 𝑗 + 1 ) ) |
800 |
799
|
neqned |
⊢ ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → 𝑀 ≠ ( 𝑗 + 1 ) ) |
801 |
800
|
3ad2antl1 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → 𝑀 ≠ ( 𝑗 + 1 ) ) |
802 |
785 786 789 801
|
leneltd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝑗 + 1 ) < 𝑀 ) |
803 |
|
elfzo2 |
⊢ ( ( 𝑗 + 1 ) ∈ ( 0 ..^ 𝑀 ) ↔ ( ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑀 ∈ ℤ ∧ ( 𝑗 + 1 ) < 𝑀 ) ) |
804 |
778 780 802 803
|
syl3anbrc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝑗 + 1 ) ∈ ( 0 ..^ 𝑀 ) ) |
805 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
806 |
|
fzofzp1 |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
807 |
806
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
808 |
805 807
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
809 |
808
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) ∈ ℝ* ) |
810 |
809
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) ∈ ℝ* ) |
811 |
810
|
3adant3 |
⊢ ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) ∈ ℝ* ) |
812 |
811
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) ∈ ℝ* ) |
813 |
|
simpl1l |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → 𝜑 ) |
814 |
813 48
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
815 |
|
fzofzp1 |
⊢ ( ( 𝑗 + 1 ) ∈ ( 0 ..^ 𝑀 ) → ( ( 𝑗 + 1 ) + 1 ) ∈ ( 0 ... 𝑀 ) ) |
816 |
804 815
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( ( 𝑗 + 1 ) + 1 ) ∈ ( 0 ... 𝑀 ) ) |
817 |
814 816
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝑄 ‘ ( ( 𝑗 + 1 ) + 1 ) ) ∈ ℝ ) |
818 |
817
|
rexrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝑄 ‘ ( ( 𝑗 + 1 ) + 1 ) ) ∈ ℝ* ) |
819 |
623
|
rexrd |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑋 ) ∈ ℝ* ) |
820 |
819
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝐸 ‘ 𝑋 ) ∈ ℝ* ) |
821 |
820
|
3ad2antl1 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝐸 ‘ 𝑋 ) ∈ ℝ* ) |
822 |
808
|
leidd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) |
823 |
822
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) |
824 |
|
id |
⊢ ( ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) → ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) |
825 |
824
|
eqcomd |
⊢ ( ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝐸 ‘ 𝑋 ) ) |
826 |
825
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝐸 ‘ 𝑋 ) ) |
827 |
823 826
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝐸 ‘ 𝑋 ) ) |
828 |
827
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝐸 ‘ 𝑋 ) ) |
829 |
828
|
3adantl3 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝐸 ‘ 𝑋 ) ) |
830 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) |
831 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) |
832 |
|
ovex |
⊢ ( 𝑗 + 1 ) ∈ V |
833 |
|
eleq1 |
⊢ ( 𝑖 = ( 𝑗 + 1 ) → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↔ ( 𝑗 + 1 ) ∈ ( 0 ..^ 𝑀 ) ) ) |
834 |
833
|
anbi2d |
⊢ ( 𝑖 = ( 𝑗 + 1 ) → ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ↔ ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ ( 0 ..^ 𝑀 ) ) ) ) |
835 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝑗 + 1 ) → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) |
836 |
|
oveq1 |
⊢ ( 𝑖 = ( 𝑗 + 1 ) → ( 𝑖 + 1 ) = ( ( 𝑗 + 1 ) + 1 ) ) |
837 |
836
|
fveq2d |
⊢ ( 𝑖 = ( 𝑗 + 1 ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑄 ‘ ( ( 𝑗 + 1 ) + 1 ) ) ) |
838 |
835 837
|
breq12d |
⊢ ( 𝑖 = ( 𝑗 + 1 ) → ( ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ↔ ( 𝑄 ‘ ( 𝑗 + 1 ) ) < ( 𝑄 ‘ ( ( 𝑗 + 1 ) + 1 ) ) ) ) |
839 |
834 838
|
imbi12d |
⊢ ( 𝑖 = ( 𝑗 + 1 ) → ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ( ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) < ( 𝑄 ‘ ( ( 𝑗 + 1 ) + 1 ) ) ) ) ) |
840 |
832 839 78
|
vtocl |
⊢ ( ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) < ( 𝑄 ‘ ( ( 𝑗 + 1 ) + 1 ) ) ) |
841 |
840
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) < ( 𝑄 ‘ ( ( 𝑗 + 1 ) + 1 ) ) ) |
842 |
831 841
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝐸 ‘ 𝑋 ) < ( 𝑄 ‘ ( ( 𝑗 + 1 ) + 1 ) ) ) |
843 |
813 804 830 842
|
syl21anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝐸 ‘ 𝑋 ) < ( 𝑄 ‘ ( ( 𝑗 + 1 ) + 1 ) ) ) |
844 |
812 818 821 829 843
|
elicod |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ ( 𝑗 + 1 ) ) [,) ( 𝑄 ‘ ( ( 𝑗 + 1 ) + 1 ) ) ) ) |
845 |
835 837
|
oveq12d |
⊢ ( 𝑖 = ( 𝑗 + 1 ) → ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑄 ‘ ( 𝑗 + 1 ) ) [,) ( 𝑄 ‘ ( ( 𝑗 + 1 ) + 1 ) ) ) ) |
846 |
845
|
eleq2d |
⊢ ( 𝑖 = ( 𝑗 + 1 ) → ( ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ ( 𝑗 + 1 ) ) [,) ( 𝑄 ‘ ( ( 𝑗 + 1 ) + 1 ) ) ) ) ) |
847 |
846
|
rspcev |
⊢ ( ( ( 𝑗 + 1 ) ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ ( 𝑗 + 1 ) ) [,) ( 𝑄 ‘ ( ( 𝑗 + 1 ) + 1 ) ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
848 |
804 844 847
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
849 |
|
simpl2 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ¬ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → 𝑗 ∈ ( 0 ..^ 𝑀 ) ) |
850 |
|
id |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) → ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ) |
851 |
850
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) → ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ) |
852 |
|
elfzofz |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
853 |
852
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
854 |
805 853
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑗 ) ∈ ℝ ) |
855 |
854
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑗 ) ∈ ℝ* ) |
856 |
855
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝑄 ‘ 𝑗 ) ∈ ℝ* ) |
857 |
856
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ¬ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝑄 ‘ 𝑗 ) ∈ ℝ* ) |
858 |
809
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) ∈ ℝ* ) |
859 |
858
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ¬ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) ∈ ℝ* ) |
860 |
819
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝐸 ‘ 𝑋 ) ∈ ℝ* ) |
861 |
860
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ¬ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝐸 ‘ 𝑋 ) ∈ ℝ* ) |
862 |
854
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑗 ) ∈ ℝ ) |
863 |
623
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) → ( 𝐸 ‘ 𝑋 ) ∈ ℝ ) |
864 |
855
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑗 ) ∈ ℝ* ) |
865 |
809
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) ∈ ℝ* ) |
866 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) → ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) |
867 |
|
iocgtlb |
⊢ ( ( ( 𝑄 ‘ 𝑗 ) ∈ ℝ* ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) ∈ ℝ* ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑗 ) < ( 𝐸 ‘ 𝑋 ) ) |
868 |
864 865 866 867
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑗 ) < ( 𝐸 ‘ 𝑋 ) ) |
869 |
862 863 868
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑗 ) ≤ ( 𝐸 ‘ 𝑋 ) ) |
870 |
869
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ¬ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝑄 ‘ 𝑗 ) ≤ ( 𝐸 ‘ 𝑋 ) ) |
871 |
863
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ¬ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝐸 ‘ 𝑋 ) ∈ ℝ ) |
872 |
808
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
873 |
872
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ¬ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
874 |
|
iocleub |
⊢ ( ( ( 𝑄 ‘ 𝑗 ) ∈ ℝ* ∧ ( 𝑄 ‘ ( 𝑗 + 1 ) ) ∈ ℝ* ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) → ( 𝐸 ‘ 𝑋 ) ≤ ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) |
875 |
864 865 866 874
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) → ( 𝐸 ‘ 𝑋 ) ≤ ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) |
876 |
875
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ¬ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝐸 ‘ 𝑋 ) ≤ ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) |
877 |
|
neqne |
⊢ ( ¬ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) → ( 𝐸 ‘ 𝑋 ) ≠ ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) |
878 |
877
|
necomd |
⊢ ( ¬ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) ≠ ( 𝐸 ‘ 𝑋 ) ) |
879 |
878
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ¬ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) ≠ ( 𝐸 ‘ 𝑋 ) ) |
880 |
871 873 876 879
|
leneltd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ¬ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝐸 ‘ 𝑋 ) < ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) |
881 |
857 859 861 870 880
|
elicod |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ¬ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) [,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) |
882 |
851 881
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ¬ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) [,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) |
883 |
764 766
|
oveq12d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑄 ‘ 𝑗 ) [,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) |
884 |
883
|
eleq2d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) [,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ) |
885 |
884
|
rspcev |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) [,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
886 |
849 882 885
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∧ ¬ ( 𝐸 ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
887 |
848 886
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
888 |
887
|
rexlimdv3a |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) → ( ∃ 𝑗 ∈ ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑗 ) (,] ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
889 |
771 888
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
890 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
891 |
|
oveq1 |
⊢ ( 𝑘 = ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) → ( 𝑘 · 𝑇 ) = ( ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) · 𝑇 ) ) |
892 |
891
|
oveq2d |
⊢ ( 𝑘 = ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) → ( 𝑋 + ( 𝑘 · 𝑇 ) ) = ( 𝑋 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) · 𝑇 ) ) ) |
893 |
892
|
eqeq2d |
⊢ ( 𝑘 = ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) → ( ( 𝐸 ‘ 𝑋 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ↔ ( 𝐸 ‘ 𝑋 ) = ( 𝑋 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) · 𝑇 ) ) ) ) |
894 |
893
|
rspcev |
⊢ ( ( ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) ∈ ℤ ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑋 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑋 ) / 𝑇 ) ) · 𝑇 ) ) ) → ∃ 𝑘 ∈ ℤ ( 𝐸 ‘ 𝑋 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) |
895 |
102 110 894
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑘 ∈ ℤ ( 𝐸 ‘ 𝑋 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) |
896 |
895
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ∃ 𝑘 ∈ ℤ ( 𝐸 ‘ 𝑋 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) |
897 |
|
r19.42v |
⊢ ( ∃ 𝑘 ∈ ℤ ( ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ↔ ( ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ ∃ 𝑘 ∈ ℤ ( 𝐸 ‘ 𝑋 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) |
898 |
890 896 897
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ∃ 𝑘 ∈ ℤ ( ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) |
899 |
898
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) → ( ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ∃ 𝑘 ∈ ℤ ( ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) ) |
900 |
899
|
reximdv |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) → ( ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑘 ∈ ℤ ( ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) ) |
901 |
889 900
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑘 ∈ ℤ ( ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) |
902 |
625 901
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) → ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑘 ∈ ℤ ( ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) ) |
903 |
|
eleq1 |
⊢ ( 𝑦 = ( 𝐸 ‘ 𝑋 ) → ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
904 |
|
eqeq1 |
⊢ ( 𝑦 = ( 𝐸 ‘ 𝑋 ) → ( 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ↔ ( 𝐸 ‘ 𝑋 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) |
905 |
903 904
|
anbi12d |
⊢ ( 𝑦 = ( 𝐸 ‘ 𝑋 ) → ( ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ↔ ( ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) ) |
906 |
905
|
2rexbidv |
⊢ ( 𝑦 = ( 𝐸 ‘ 𝑋 ) → ( ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑘 ∈ ℤ ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ↔ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑘 ∈ ℤ ( ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) ) |
907 |
906
|
anbi2d |
⊢ ( 𝑦 = ( 𝐸 ‘ 𝑋 ) → ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑘 ∈ ℤ ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) ↔ ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑘 ∈ ℤ ( ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) ) ) |
908 |
907
|
imbi1d |
⊢ ( 𝑦 = ( 𝐸 ‘ 𝑋 ) → ( ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑘 ∈ ℤ ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑦 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) → ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ≠ ∅ ) ↔ ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑘 ∈ ℤ ( ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) → ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ≠ ∅ ) ) ) |
909 |
908 610
|
vtoclg |
⊢ ( ( 𝐸 ‘ 𝑋 ) ∈ ℝ → ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑘 ∈ ℤ ( ( 𝐸 ‘ 𝑋 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ ( 𝐸 ‘ 𝑋 ) = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) → ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ≠ ∅ ) ) |
910 |
624 902 909
|
sylc |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ 𝑋 ) ≠ 𝐵 ) → ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ≠ ∅ ) |
911 |
612 910
|
pm2.61dane |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ≠ ∅ ) |