Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem50.xre |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
2 |
|
fourierdlem50.p |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( π + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
3 |
|
fourierdlem50.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
4 |
|
fourierdlem50.v |
⊢ ( 𝜑 → 𝑉 ∈ ( 𝑃 ‘ 𝑀 ) ) |
5 |
|
fourierdlem50.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
6 |
|
fourierdlem50.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
7 |
|
fourierdlem50.altb |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
8 |
|
fourierdlem50.ab |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ( - π [,] π ) ) |
9 |
|
fourierdlem50.q |
⊢ 𝑄 = ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) |
10 |
|
fourierdlem50.t |
⊢ 𝑇 = ( { 𝐴 , 𝐵 } ∪ ( ran 𝑄 ∩ ( 𝐴 (,) 𝐵 ) ) ) |
11 |
|
fourierdlem50.n |
⊢ 𝑁 = ( ( ♯ ‘ 𝑇 ) − 1 ) |
12 |
|
fourierdlem50.s |
⊢ 𝑆 = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝑇 ) ) |
13 |
|
fourierdlem50.j |
⊢ ( 𝜑 → 𝐽 ∈ ( 0 ..^ 𝑁 ) ) |
14 |
|
fourierdlem50.u |
⊢ 𝑈 = ( ℩ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
15 |
|
fourierdlem50.ch |
⊢ ( 𝜒 ↔ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) ) |
16 |
5 6 7
|
ltled |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
17 |
2 3 4
|
fourierdlem15 |
⊢ ( 𝜑 → 𝑉 : ( 0 ... 𝑀 ) ⟶ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ) |
18 |
|
pire |
⊢ π ∈ ℝ |
19 |
18
|
renegcli |
⊢ - π ∈ ℝ |
20 |
19
|
a1i |
⊢ ( 𝜑 → - π ∈ ℝ ) |
21 |
20 1
|
readdcld |
⊢ ( 𝜑 → ( - π + 𝑋 ) ∈ ℝ ) |
22 |
18
|
a1i |
⊢ ( 𝜑 → π ∈ ℝ ) |
23 |
22 1
|
readdcld |
⊢ ( 𝜑 → ( π + 𝑋 ) ∈ ℝ ) |
24 |
21 23
|
iccssred |
⊢ ( 𝜑 → ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ⊆ ℝ ) |
25 |
17 24
|
fssd |
⊢ ( 𝜑 → 𝑉 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
26 |
25
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑉 ‘ 𝑖 ) ∈ ℝ ) |
27 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝑋 ∈ ℝ ) |
28 |
26 27
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ∈ ℝ ) |
29 |
28 9
|
fmptd |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
30 |
9
|
a1i |
⊢ ( 𝜑 → 𝑄 = ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) ) |
31 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 𝑉 ‘ 𝑖 ) = ( 𝑉 ‘ 0 ) ) |
32 |
31
|
oveq1d |
⊢ ( 𝑖 = 0 → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) = ( ( 𝑉 ‘ 0 ) − 𝑋 ) ) |
33 |
32
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) = ( ( 𝑉 ‘ 0 ) − 𝑋 ) ) |
34 |
|
nnssnn0 |
⊢ ℕ ⊆ ℕ0 |
35 |
34
|
a1i |
⊢ ( 𝜑 → ℕ ⊆ ℕ0 ) |
36 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
37 |
35 36
|
sseqtrdi |
⊢ ( 𝜑 → ℕ ⊆ ( ℤ≥ ‘ 0 ) ) |
38 |
37 3
|
sseldd |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
39 |
|
eluzfz1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → 0 ∈ ( 0 ... 𝑀 ) ) |
40 |
38 39
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑀 ) ) |
41 |
25 40
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑉 ‘ 0 ) ∈ ℝ ) |
42 |
41 1
|
resubcld |
⊢ ( 𝜑 → ( ( 𝑉 ‘ 0 ) − 𝑋 ) ∈ ℝ ) |
43 |
30 33 40 42
|
fvmptd |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = ( ( 𝑉 ‘ 0 ) − 𝑋 ) ) |
44 |
2
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑉 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑉 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑉 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑉 ‘ 𝑀 ) = ( π + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
45 |
3 44
|
syl |
⊢ ( 𝜑 → ( 𝑉 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑉 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑉 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑉 ‘ 𝑀 ) = ( π + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
46 |
4 45
|
mpbid |
⊢ ( 𝜑 → ( 𝑉 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑉 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑉 ‘ 𝑀 ) = ( π + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) |
47 |
46
|
simprd |
⊢ ( 𝜑 → ( ( ( 𝑉 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑉 ‘ 𝑀 ) = ( π + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) |
48 |
47
|
simpld |
⊢ ( 𝜑 → ( ( 𝑉 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑉 ‘ 𝑀 ) = ( π + 𝑋 ) ) ) |
49 |
48
|
simpld |
⊢ ( 𝜑 → ( 𝑉 ‘ 0 ) = ( - π + 𝑋 ) ) |
50 |
49
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑉 ‘ 0 ) − 𝑋 ) = ( ( - π + 𝑋 ) − 𝑋 ) ) |
51 |
20
|
recnd |
⊢ ( 𝜑 → - π ∈ ℂ ) |
52 |
1
|
recnd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
53 |
51 52
|
pncand |
⊢ ( 𝜑 → ( ( - π + 𝑋 ) − 𝑋 ) = - π ) |
54 |
43 50 53
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = - π ) |
55 |
20
|
rexrd |
⊢ ( 𝜑 → - π ∈ ℝ* ) |
56 |
22
|
rexrd |
⊢ ( 𝜑 → π ∈ ℝ* ) |
57 |
5
|
leidd |
⊢ ( 𝜑 → 𝐴 ≤ 𝐴 ) |
58 |
5 6 5 57 16
|
eliccd |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
59 |
8 58
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ ( - π [,] π ) ) |
60 |
|
iccgelb |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ* ∧ 𝐴 ∈ ( - π [,] π ) ) → - π ≤ 𝐴 ) |
61 |
55 56 59 60
|
syl3anc |
⊢ ( 𝜑 → - π ≤ 𝐴 ) |
62 |
54 61
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) ≤ 𝐴 ) |
63 |
6
|
leidd |
⊢ ( 𝜑 → 𝐵 ≤ 𝐵 ) |
64 |
5 6 6 16 63
|
eliccd |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
65 |
8 64
|
sseldd |
⊢ ( 𝜑 → 𝐵 ∈ ( - π [,] π ) ) |
66 |
|
iccleub |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ* ∧ 𝐵 ∈ ( - π [,] π ) ) → 𝐵 ≤ π ) |
67 |
55 56 65 66
|
syl3anc |
⊢ ( 𝜑 → 𝐵 ≤ π ) |
68 |
|
fveq2 |
⊢ ( 𝑖 = 𝑀 → ( 𝑉 ‘ 𝑖 ) = ( 𝑉 ‘ 𝑀 ) ) |
69 |
68
|
oveq1d |
⊢ ( 𝑖 = 𝑀 → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) = ( ( 𝑉 ‘ 𝑀 ) − 𝑋 ) ) |
70 |
69
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 = 𝑀 ) → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) = ( ( 𝑉 ‘ 𝑀 ) − 𝑋 ) ) |
71 |
|
eluzfz2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
72 |
38 71
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
73 |
25 72
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝑀 ) ∈ ℝ ) |
74 |
73 1
|
resubcld |
⊢ ( 𝜑 → ( ( 𝑉 ‘ 𝑀 ) − 𝑋 ) ∈ ℝ ) |
75 |
30 70 72 74
|
fvmptd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) = ( ( 𝑉 ‘ 𝑀 ) − 𝑋 ) ) |
76 |
48
|
simprd |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝑀 ) = ( π + 𝑋 ) ) |
77 |
76
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑉 ‘ 𝑀 ) − 𝑋 ) = ( ( π + 𝑋 ) − 𝑋 ) ) |
78 |
22
|
recnd |
⊢ ( 𝜑 → π ∈ ℂ ) |
79 |
78 52
|
pncand |
⊢ ( 𝜑 → ( ( π + 𝑋 ) − 𝑋 ) = π ) |
80 |
75 77 79
|
3eqtrrd |
⊢ ( 𝜑 → π = ( 𝑄 ‘ 𝑀 ) ) |
81 |
67 80
|
breqtrd |
⊢ ( 𝜑 → 𝐵 ≤ ( 𝑄 ‘ 𝑀 ) ) |
82 |
|
prfi |
⊢ { 𝐴 , 𝐵 } ∈ Fin |
83 |
82
|
a1i |
⊢ ( 𝜑 → { 𝐴 , 𝐵 } ∈ Fin ) |
84 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝑀 ) ∈ Fin ) |
85 |
9
|
rnmptfi |
⊢ ( ( 0 ... 𝑀 ) ∈ Fin → ran 𝑄 ∈ Fin ) |
86 |
84 85
|
syl |
⊢ ( 𝜑 → ran 𝑄 ∈ Fin ) |
87 |
|
infi |
⊢ ( ran 𝑄 ∈ Fin → ( ran 𝑄 ∩ ( 𝐴 (,) 𝐵 ) ) ∈ Fin ) |
88 |
86 87
|
syl |
⊢ ( 𝜑 → ( ran 𝑄 ∩ ( 𝐴 (,) 𝐵 ) ) ∈ Fin ) |
89 |
|
unfi |
⊢ ( ( { 𝐴 , 𝐵 } ∈ Fin ∧ ( ran 𝑄 ∩ ( 𝐴 (,) 𝐵 ) ) ∈ Fin ) → ( { 𝐴 , 𝐵 } ∪ ( ran 𝑄 ∩ ( 𝐴 (,) 𝐵 ) ) ) ∈ Fin ) |
90 |
83 88 89
|
syl2anc |
⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ∪ ( ran 𝑄 ∩ ( 𝐴 (,) 𝐵 ) ) ) ∈ Fin ) |
91 |
10 90
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ Fin ) |
92 |
5 6
|
jca |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
93 |
|
prssg |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ↔ { 𝐴 , 𝐵 } ⊆ ℝ ) ) |
94 |
5 6 93
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ↔ { 𝐴 , 𝐵 } ⊆ ℝ ) ) |
95 |
92 94
|
mpbid |
⊢ ( 𝜑 → { 𝐴 , 𝐵 } ⊆ ℝ ) |
96 |
|
inss2 |
⊢ ( ran 𝑄 ∩ ( 𝐴 (,) 𝐵 ) ) ⊆ ( 𝐴 (,) 𝐵 ) |
97 |
|
ioossre |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
98 |
96 97
|
sstri |
⊢ ( ran 𝑄 ∩ ( 𝐴 (,) 𝐵 ) ) ⊆ ℝ |
99 |
98
|
a1i |
⊢ ( 𝜑 → ( ran 𝑄 ∩ ( 𝐴 (,) 𝐵 ) ) ⊆ ℝ ) |
100 |
95 99
|
unssd |
⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ∪ ( ran 𝑄 ∩ ( 𝐴 (,) 𝐵 ) ) ) ⊆ ℝ ) |
101 |
10 100
|
eqsstrid |
⊢ ( 𝜑 → 𝑇 ⊆ ℝ ) |
102 |
91 101 12 11
|
fourierdlem36 |
⊢ ( 𝜑 → 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝑇 ) ) |
103 |
|
eqid |
⊢ sup ( { 𝑥 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑥 ) ≤ ( 𝑆 ‘ 𝐽 ) } , ℝ , < ) = sup ( { 𝑥 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑥 ) ≤ ( 𝑆 ‘ 𝐽 ) } , ℝ , < ) |
104 |
3 5 6 16 29 62 81 13 10 102 103
|
fourierdlem20 |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
105 |
15
|
biimpi |
⊢ ( 𝜒 → ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) ) |
106 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) → 𝜑 ) |
107 |
105 106
|
syl |
⊢ ( 𝜒 → 𝜑 ) |
108 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) → 𝑘 ∈ ( 0 ..^ 𝑀 ) ) |
109 |
105 108
|
syl |
⊢ ( 𝜒 → 𝑘 ∈ ( 0 ..^ 𝑀 ) ) |
110 |
107 109
|
jca |
⊢ ( 𝜒 → ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ) |
111 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
112 |
105 111
|
syl |
⊢ ( 𝜒 → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
113 |
|
elfzofz |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑀 ) → 𝑘 ∈ ( 0 ... 𝑀 ) ) |
114 |
113
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) → 𝑘 ∈ ( 0 ... 𝑀 ) ) |
115 |
105 114
|
syl |
⊢ ( 𝜒 → 𝑘 ∈ ( 0 ... 𝑀 ) ) |
116 |
107 25
|
syl |
⊢ ( 𝜒 → 𝑉 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
117 |
116 115
|
ffvelrnd |
⊢ ( 𝜒 → ( 𝑉 ‘ 𝑘 ) ∈ ℝ ) |
118 |
107 1
|
syl |
⊢ ( 𝜒 → 𝑋 ∈ ℝ ) |
119 |
117 118
|
resubcld |
⊢ ( 𝜒 → ( ( 𝑉 ‘ 𝑘 ) − 𝑋 ) ∈ ℝ ) |
120 |
|
fveq2 |
⊢ ( 𝑖 = 𝑘 → ( 𝑉 ‘ 𝑖 ) = ( 𝑉 ‘ 𝑘 ) ) |
121 |
120
|
oveq1d |
⊢ ( 𝑖 = 𝑘 → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) = ( ( 𝑉 ‘ 𝑘 ) − 𝑋 ) ) |
122 |
121 9
|
fvmptg |
⊢ ( ( 𝑘 ∈ ( 0 ... 𝑀 ) ∧ ( ( 𝑉 ‘ 𝑘 ) − 𝑋 ) ∈ ℝ ) → ( 𝑄 ‘ 𝑘 ) = ( ( 𝑉 ‘ 𝑘 ) − 𝑋 ) ) |
123 |
115 119 122
|
syl2anc |
⊢ ( 𝜒 → ( 𝑄 ‘ 𝑘 ) = ( ( 𝑉 ‘ 𝑘 ) − 𝑋 ) ) |
124 |
123 119
|
eqeltrd |
⊢ ( 𝜒 → ( 𝑄 ‘ 𝑘 ) ∈ ℝ ) |
125 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
126 |
|
fzofzp1 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
127 |
126
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
128 |
125 127
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
129 |
107 112 128
|
syl2anc |
⊢ ( 𝜒 → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
130 |
|
isof1o |
⊢ ( 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝑇 ) → 𝑆 : ( 0 ... 𝑁 ) –1-1-onto→ 𝑇 ) |
131 |
102 130
|
syl |
⊢ ( 𝜑 → 𝑆 : ( 0 ... 𝑁 ) –1-1-onto→ 𝑇 ) |
132 |
|
f1of |
⊢ ( 𝑆 : ( 0 ... 𝑁 ) –1-1-onto→ 𝑇 → 𝑆 : ( 0 ... 𝑁 ) ⟶ 𝑇 ) |
133 |
131 132
|
syl |
⊢ ( 𝜑 → 𝑆 : ( 0 ... 𝑁 ) ⟶ 𝑇 ) |
134 |
|
fzofzp1 |
⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → ( 𝐽 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
135 |
13 134
|
syl |
⊢ ( 𝜑 → ( 𝐽 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
136 |
133 135
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ 𝑇 ) |
137 |
101 136
|
sseldd |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ℝ ) |
138 |
107 137
|
syl |
⊢ ( 𝜒 → ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ℝ ) |
139 |
|
elfzofz |
⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → 𝐽 ∈ ( 0 ... 𝑁 ) ) |
140 |
13 139
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ ( 0 ... 𝑁 ) ) |
141 |
133 140
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐽 ) ∈ 𝑇 ) |
142 |
101 141
|
sseldd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐽 ) ∈ ℝ ) |
143 |
107 142
|
syl |
⊢ ( 𝜒 → ( 𝑆 ‘ 𝐽 ) ∈ ℝ ) |
144 |
105
|
simprd |
⊢ ( 𝜒 → ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) |
145 |
124
|
rexrd |
⊢ ( 𝜒 → ( 𝑄 ‘ 𝑘 ) ∈ ℝ* ) |
146 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
147 |
|
fzofzp1 |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑀 ) → ( 𝑘 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
148 |
147
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑘 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
149 |
146 148
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
150 |
149
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑘 + 1 ) ) ∈ ℝ* ) |
151 |
110 150
|
syl |
⊢ ( 𝜒 → ( 𝑄 ‘ ( 𝑘 + 1 ) ) ∈ ℝ* ) |
152 |
143
|
rexrd |
⊢ ( 𝜒 → ( 𝑆 ‘ 𝐽 ) ∈ ℝ* ) |
153 |
138
|
rexrd |
⊢ ( 𝜒 → ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ℝ* ) |
154 |
|
elfzoelz |
⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → 𝐽 ∈ ℤ ) |
155 |
154
|
zred |
⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → 𝐽 ∈ ℝ ) |
156 |
155
|
ltp1d |
⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → 𝐽 < ( 𝐽 + 1 ) ) |
157 |
13 156
|
syl |
⊢ ( 𝜑 → 𝐽 < ( 𝐽 + 1 ) ) |
158 |
|
isoeq5 |
⊢ ( 𝑇 = ( { 𝐴 , 𝐵 } ∪ ( ran 𝑄 ∩ ( 𝐴 (,) 𝐵 ) ) ) → ( 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝑇 ) ↔ 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐴 , 𝐵 } ∪ ( ran 𝑄 ∩ ( 𝐴 (,) 𝐵 ) ) ) ) ) ) |
159 |
10 158
|
ax-mp |
⊢ ( 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝑇 ) ↔ 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐴 , 𝐵 } ∪ ( ran 𝑄 ∩ ( 𝐴 (,) 𝐵 ) ) ) ) ) |
160 |
102 159
|
sylib |
⊢ ( 𝜑 → 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐴 , 𝐵 } ∪ ( ran 𝑄 ∩ ( 𝐴 (,) 𝐵 ) ) ) ) ) |
161 |
|
isorel |
⊢ ( ( 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐴 , 𝐵 } ∪ ( ran 𝑄 ∩ ( 𝐴 (,) 𝐵 ) ) ) ) ∧ ( 𝐽 ∈ ( 0 ... 𝑁 ) ∧ ( 𝐽 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → ( 𝐽 < ( 𝐽 + 1 ) ↔ ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
162 |
160 140 135 161
|
syl12anc |
⊢ ( 𝜑 → ( 𝐽 < ( 𝐽 + 1 ) ↔ ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
163 |
157 162
|
mpbid |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
164 |
107 163
|
syl |
⊢ ( 𝜒 → ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
165 |
145 151 152 153 164
|
ioossioobi |
⊢ ( 𝜒 → ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ↔ ( ( 𝑄 ‘ 𝑘 ) ≤ ( 𝑆 ‘ 𝐽 ) ∧ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ≤ ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) ) |
166 |
144 165
|
mpbid |
⊢ ( 𝜒 → ( ( 𝑄 ‘ 𝑘 ) ≤ ( 𝑆 ‘ 𝐽 ) ∧ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ≤ ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) |
167 |
166
|
simpld |
⊢ ( 𝜒 → ( 𝑄 ‘ 𝑘 ) ≤ ( 𝑆 ‘ 𝐽 ) ) |
168 |
124 143 138 167 164
|
lelttrd |
⊢ ( 𝜒 → ( 𝑄 ‘ 𝑘 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
169 |
|
elfzofz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
170 |
169
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
171 |
170
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
172 |
105 171
|
syl |
⊢ ( 𝜒 → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
173 |
107 172 28
|
syl2anc |
⊢ ( 𝜒 → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ∈ ℝ ) |
174 |
9
|
fvmpt2 |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ∈ ℝ ) → ( 𝑄 ‘ 𝑖 ) = ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) |
175 |
172 173 174
|
syl2anc |
⊢ ( 𝜒 → ( 𝑄 ‘ 𝑖 ) = ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) |
176 |
175 173
|
eqeltrd |
⊢ ( 𝜒 → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
177 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
178 |
105 177
|
syl |
⊢ ( 𝜒 → ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
179 |
176 129 143 138 164 178
|
fourierdlem10 |
⊢ ( 𝜒 → ( ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑆 ‘ 𝐽 ) ∧ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ≤ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
180 |
179
|
simprd |
⊢ ( 𝜒 → ( 𝑆 ‘ ( 𝐽 + 1 ) ) ≤ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
181 |
124 138 129 168 180
|
ltletrd |
⊢ ( 𝜒 → ( 𝑄 ‘ 𝑘 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
182 |
124 129 118 181
|
ltadd2dd |
⊢ ( 𝜒 → ( 𝑋 + ( 𝑄 ‘ 𝑘 ) ) < ( 𝑋 + ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
183 |
123
|
oveq2d |
⊢ ( 𝜒 → ( 𝑋 + ( 𝑄 ‘ 𝑘 ) ) = ( 𝑋 + ( ( 𝑉 ‘ 𝑘 ) − 𝑋 ) ) ) |
184 |
107 52
|
syl |
⊢ ( 𝜒 → 𝑋 ∈ ℂ ) |
185 |
117
|
recnd |
⊢ ( 𝜒 → ( 𝑉 ‘ 𝑘 ) ∈ ℂ ) |
186 |
184 185
|
pncan3d |
⊢ ( 𝜒 → ( 𝑋 + ( ( 𝑉 ‘ 𝑘 ) − 𝑋 ) ) = ( 𝑉 ‘ 𝑘 ) ) |
187 |
183 186
|
eqtr2d |
⊢ ( 𝜒 → ( 𝑉 ‘ 𝑘 ) = ( 𝑋 + ( 𝑄 ‘ 𝑘 ) ) ) |
188 |
112 126
|
syl |
⊢ ( 𝜒 → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
189 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑉 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
190 |
189 127
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
191 |
107 112 190
|
syl2anc |
⊢ ( 𝜒 → ( 𝑉 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
192 |
191 118
|
resubcld |
⊢ ( 𝜒 → ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ∈ ℝ ) |
193 |
188 192
|
jca |
⊢ ( 𝜒 → ( ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ∧ ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ∈ ℝ ) ) |
194 |
|
eleq1 |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ( 𝑘 ∈ ( 0 ... 𝑀 ) ↔ ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) ) |
195 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ( 𝑉 ‘ 𝑘 ) = ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
196 |
195
|
oveq1d |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ( ( 𝑉 ‘ 𝑘 ) − 𝑋 ) = ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) |
197 |
196
|
eleq1d |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ( ( ( 𝑉 ‘ 𝑘 ) − 𝑋 ) ∈ ℝ ↔ ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ∈ ℝ ) ) |
198 |
194 197
|
anbi12d |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ( ( 𝑘 ∈ ( 0 ... 𝑀 ) ∧ ( ( 𝑉 ‘ 𝑘 ) − 𝑋 ) ∈ ℝ ) ↔ ( ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ∧ ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ∈ ℝ ) ) ) |
199 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
200 |
199 196
|
eqeq12d |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ( ( 𝑄 ‘ 𝑘 ) = ( ( 𝑉 ‘ 𝑘 ) − 𝑋 ) ↔ ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) |
201 |
198 200
|
imbi12d |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ( ( ( 𝑘 ∈ ( 0 ... 𝑀 ) ∧ ( ( 𝑉 ‘ 𝑘 ) − 𝑋 ) ∈ ℝ ) → ( 𝑄 ‘ 𝑘 ) = ( ( 𝑉 ‘ 𝑘 ) − 𝑋 ) ) ↔ ( ( ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ∧ ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ∈ ℝ ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) ) |
202 |
201 122
|
vtoclg |
⊢ ( ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) → ( ( ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ∧ ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ∈ ℝ ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) |
203 |
188 193 202
|
sylc |
⊢ ( 𝜒 → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) |
204 |
203
|
oveq2d |
⊢ ( 𝜒 → ( 𝑋 + ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( 𝑋 + ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) |
205 |
191
|
recnd |
⊢ ( 𝜒 → ( 𝑉 ‘ ( 𝑖 + 1 ) ) ∈ ℂ ) |
206 |
184 205
|
pncan3d |
⊢ ( 𝜒 → ( 𝑋 + ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) = ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
207 |
204 206
|
eqtr2d |
⊢ ( 𝜒 → ( 𝑉 ‘ ( 𝑖 + 1 ) ) = ( 𝑋 + ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
208 |
182 187 207
|
3brtr4d |
⊢ ( 𝜒 → ( 𝑉 ‘ 𝑘 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
209 |
|
eleq1w |
⊢ ( 𝑙 = 𝑖 → ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ↔ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ) |
210 |
209
|
anbi2d |
⊢ ( 𝑙 = 𝑖 → ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ↔ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ) ) |
211 |
|
oveq1 |
⊢ ( 𝑙 = 𝑖 → ( 𝑙 + 1 ) = ( 𝑖 + 1 ) ) |
212 |
211
|
fveq2d |
⊢ ( 𝑙 = 𝑖 → ( 𝑉 ‘ ( 𝑙 + 1 ) ) = ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
213 |
212
|
breq2d |
⊢ ( 𝑙 = 𝑖 → ( ( 𝑉 ‘ 𝑘 ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ↔ ( 𝑉 ‘ 𝑘 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) |
214 |
210 213
|
anbi12d |
⊢ ( 𝑙 = 𝑖 → ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑘 ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ↔ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑘 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) |
215 |
|
fveq2 |
⊢ ( 𝑙 = 𝑖 → ( 𝑉 ‘ 𝑙 ) = ( 𝑉 ‘ 𝑖 ) ) |
216 |
215
|
breq2d |
⊢ ( 𝑙 = 𝑖 → ( ( 𝑉 ‘ 𝑘 ) ≤ ( 𝑉 ‘ 𝑙 ) ↔ ( 𝑉 ‘ 𝑘 ) ≤ ( 𝑉 ‘ 𝑖 ) ) ) |
217 |
214 216
|
imbi12d |
⊢ ( 𝑙 = 𝑖 → ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑘 ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) → ( 𝑉 ‘ 𝑘 ) ≤ ( 𝑉 ‘ 𝑙 ) ) ↔ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑘 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑉 ‘ 𝑘 ) ≤ ( 𝑉 ‘ 𝑖 ) ) ) ) |
218 |
|
eleq1w |
⊢ ( ℎ = 𝑘 → ( ℎ ∈ ( 0 ..^ 𝑀 ) ↔ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ) |
219 |
218
|
anbi2d |
⊢ ( ℎ = 𝑘 → ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ↔ ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ) ) |
220 |
219
|
anbi1d |
⊢ ( ℎ = 𝑘 → ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ↔ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ) ) |
221 |
|
fveq2 |
⊢ ( ℎ = 𝑘 → ( 𝑉 ‘ ℎ ) = ( 𝑉 ‘ 𝑘 ) ) |
222 |
221
|
breq1d |
⊢ ( ℎ = 𝑘 → ( ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ↔ ( 𝑉 ‘ 𝑘 ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ) |
223 |
220 222
|
anbi12d |
⊢ ( ℎ = 𝑘 → ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ↔ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑘 ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ) ) |
224 |
221
|
breq1d |
⊢ ( ℎ = 𝑘 → ( ( 𝑉 ‘ ℎ ) ≤ ( 𝑉 ‘ 𝑙 ) ↔ ( 𝑉 ‘ 𝑘 ) ≤ ( 𝑉 ‘ 𝑙 ) ) ) |
225 |
223 224
|
imbi12d |
⊢ ( ℎ = 𝑘 → ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) → ( 𝑉 ‘ ℎ ) ≤ ( 𝑉 ‘ 𝑙 ) ) ↔ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑘 ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) → ( 𝑉 ‘ 𝑘 ) ≤ ( 𝑉 ‘ 𝑙 ) ) ) ) |
226 |
|
elfzoelz |
⊢ ( ℎ ∈ ( 0 ..^ 𝑀 ) → ℎ ∈ ℤ ) |
227 |
226
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) → ℎ ∈ ℤ ) |
228 |
|
elfzoelz |
⊢ ( 𝑙 ∈ ( 0 ..^ 𝑀 ) → 𝑙 ∈ ℤ ) |
229 |
228
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) → 𝑙 ∈ ℤ ) |
230 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ∧ ¬ ℎ < ( 𝑙 + 1 ) ) → ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) |
231 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) → 𝑉 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
232 |
|
fzofzp1 |
⊢ ( 𝑙 ∈ ( 0 ..^ 𝑀 ) → ( 𝑙 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
233 |
232
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑙 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
234 |
231 233
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ ( 𝑙 + 1 ) ) ∈ ℝ ) |
235 |
234
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ ( 𝑙 + 1 ) ) ∈ ℝ ) |
236 |
235
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ℎ < ( 𝑙 + 1 ) ) → ( 𝑉 ‘ ( 𝑙 + 1 ) ) ∈ ℝ ) |
237 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) → 𝑉 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
238 |
|
elfzofz |
⊢ ( ℎ ∈ ( 0 ..^ 𝑀 ) → ℎ ∈ ( 0 ... 𝑀 ) ) |
239 |
238
|
adantl |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) → ℎ ∈ ( 0 ... 𝑀 ) ) |
240 |
237 239
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ ℎ ) ∈ ℝ ) |
241 |
240
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ℎ < ( 𝑙 + 1 ) ) → ( 𝑉 ‘ ℎ ) ∈ ℝ ) |
242 |
228
|
zred |
⊢ ( 𝑙 ∈ ( 0 ..^ 𝑀 ) → 𝑙 ∈ ℝ ) |
243 |
|
peano2re |
⊢ ( 𝑙 ∈ ℝ → ( 𝑙 + 1 ) ∈ ℝ ) |
244 |
242 243
|
syl |
⊢ ( 𝑙 ∈ ( 0 ..^ 𝑀 ) → ( 𝑙 + 1 ) ∈ ℝ ) |
245 |
244
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ℎ < ( 𝑙 + 1 ) ) → ( 𝑙 + 1 ) ∈ ℝ ) |
246 |
226
|
zred |
⊢ ( ℎ ∈ ( 0 ..^ 𝑀 ) → ℎ ∈ ℝ ) |
247 |
246
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ℎ < ( 𝑙 + 1 ) ) → ℎ ∈ ℝ ) |
248 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ℎ < ( 𝑙 + 1 ) ) → ¬ ℎ < ( 𝑙 + 1 ) ) |
249 |
245 247 248
|
nltled |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ℎ < ( 𝑙 + 1 ) ) → ( 𝑙 + 1 ) ≤ ℎ ) |
250 |
228
|
peano2zd |
⊢ ( 𝑙 ∈ ( 0 ..^ 𝑀 ) → ( 𝑙 + 1 ) ∈ ℤ ) |
251 |
250
|
ad2antlr |
⊢ ( ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑙 + 1 ) ≤ ℎ ) → ( 𝑙 + 1 ) ∈ ℤ ) |
252 |
226
|
ad2antrr |
⊢ ( ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑙 + 1 ) ≤ ℎ ) → ℎ ∈ ℤ ) |
253 |
|
simpr |
⊢ ( ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑙 + 1 ) ≤ ℎ ) → ( 𝑙 + 1 ) ≤ ℎ ) |
254 |
|
eluz2 |
⊢ ( ℎ ∈ ( ℤ≥ ‘ ( 𝑙 + 1 ) ) ↔ ( ( 𝑙 + 1 ) ∈ ℤ ∧ ℎ ∈ ℤ ∧ ( 𝑙 + 1 ) ≤ ℎ ) ) |
255 |
251 252 253 254
|
syl3anbrc |
⊢ ( ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑙 + 1 ) ≤ ℎ ) → ℎ ∈ ( ℤ≥ ‘ ( 𝑙 + 1 ) ) ) |
256 |
255
|
adantlll |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑙 + 1 ) ≤ ℎ ) → ℎ ∈ ( ℤ≥ ‘ ( 𝑙 + 1 ) ) ) |
257 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 𝜑 ) |
258 |
|
0zd |
⊢ ( ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 0 ∈ ℤ ) |
259 |
|
elfzoel2 |
⊢ ( ℎ ∈ ( 0 ..^ 𝑀 ) → 𝑀 ∈ ℤ ) |
260 |
259
|
ad2antrr |
⊢ ( ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 𝑀 ∈ ℤ ) |
261 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) → 𝑖 ∈ ℤ ) |
262 |
261
|
adantl |
⊢ ( ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 𝑖 ∈ ℤ ) |
263 |
|
0red |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 0 ∈ ℝ ) |
264 |
261
|
zred |
⊢ ( 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) → 𝑖 ∈ ℝ ) |
265 |
264
|
adantl |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 𝑖 ∈ ℝ ) |
266 |
242
|
adantr |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 𝑙 ∈ ℝ ) |
267 |
|
elfzole1 |
⊢ ( 𝑙 ∈ ( 0 ..^ 𝑀 ) → 0 ≤ 𝑙 ) |
268 |
267
|
adantr |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 0 ≤ 𝑙 ) |
269 |
266 243
|
syl |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → ( 𝑙 + 1 ) ∈ ℝ ) |
270 |
266
|
ltp1d |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 𝑙 < ( 𝑙 + 1 ) ) |
271 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) → ( 𝑙 + 1 ) ≤ 𝑖 ) |
272 |
271
|
adantl |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → ( 𝑙 + 1 ) ≤ 𝑖 ) |
273 |
266 269 265 270 272
|
ltletrd |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 𝑙 < 𝑖 ) |
274 |
263 266 265 268 273
|
lelttrd |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 0 < 𝑖 ) |
275 |
263 265 274
|
ltled |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 0 ≤ 𝑖 ) |
276 |
275
|
adantll |
⊢ ( ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 0 ≤ 𝑖 ) |
277 |
264
|
adantl |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 𝑖 ∈ ℝ ) |
278 |
259
|
zred |
⊢ ( ℎ ∈ ( 0 ..^ 𝑀 ) → 𝑀 ∈ ℝ ) |
279 |
278
|
adantr |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 𝑀 ∈ ℝ ) |
280 |
246
|
adantr |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → ℎ ∈ ℝ ) |
281 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) → 𝑖 ≤ ℎ ) |
282 |
281
|
adantl |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 𝑖 ≤ ℎ ) |
283 |
|
elfzolt2 |
⊢ ( ℎ ∈ ( 0 ..^ 𝑀 ) → ℎ < 𝑀 ) |
284 |
283
|
adantr |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → ℎ < 𝑀 ) |
285 |
277 280 279 282 284
|
lelttrd |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 𝑖 < 𝑀 ) |
286 |
277 279 285
|
ltled |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 𝑖 ≤ 𝑀 ) |
287 |
286
|
adantlr |
⊢ ( ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 𝑖 ≤ 𝑀 ) |
288 |
258 260 262 276 287
|
elfzd |
⊢ ( ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
289 |
288
|
adantlll |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
290 |
257 289 26
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → ( 𝑉 ‘ 𝑖 ) ∈ ℝ ) |
291 |
290
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑙 + 1 ) ≤ ℎ ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → ( 𝑉 ‘ 𝑖 ) ∈ ℝ ) |
292 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 𝜑 ) |
293 |
|
0zd |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 0 ∈ ℤ ) |
294 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) → 𝑖 ∈ ℤ ) |
295 |
294
|
adantl |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 𝑖 ∈ ℤ ) |
296 |
|
0red |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 0 ∈ ℝ ) |
297 |
295
|
zred |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 𝑖 ∈ ℝ ) |
298 |
242
|
adantr |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 𝑙 ∈ ℝ ) |
299 |
267
|
adantr |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 0 ≤ 𝑙 ) |
300 |
298 243
|
syl |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → ( 𝑙 + 1 ) ∈ ℝ ) |
301 |
298
|
ltp1d |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 𝑙 < ( 𝑙 + 1 ) ) |
302 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) → ( 𝑙 + 1 ) ≤ 𝑖 ) |
303 |
302
|
adantl |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → ( 𝑙 + 1 ) ≤ 𝑖 ) |
304 |
298 300 297 301 303
|
ltletrd |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 𝑙 < 𝑖 ) |
305 |
296 298 297 299 304
|
lelttrd |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 0 < 𝑖 ) |
306 |
296 297 305
|
ltled |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 0 ≤ 𝑖 ) |
307 |
|
eluz2 |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 0 ) ↔ ( 0 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ 0 ≤ 𝑖 ) ) |
308 |
293 295 306 307
|
syl3anbrc |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 𝑖 ∈ ( ℤ≥ ‘ 0 ) ) |
309 |
308
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 𝑖 ∈ ( ℤ≥ ‘ 0 ) ) |
310 |
|
elfzoel2 |
⊢ ( 𝑙 ∈ ( 0 ..^ 𝑀 ) → 𝑀 ∈ ℤ ) |
311 |
310
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 𝑀 ∈ ℤ ) |
312 |
294
|
zred |
⊢ ( 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) → 𝑖 ∈ ℝ ) |
313 |
312
|
adantl |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 𝑖 ∈ ℝ ) |
314 |
|
peano2rem |
⊢ ( ℎ ∈ ℝ → ( ℎ − 1 ) ∈ ℝ ) |
315 |
246 314
|
syl |
⊢ ( ℎ ∈ ( 0 ..^ 𝑀 ) → ( ℎ − 1 ) ∈ ℝ ) |
316 |
315
|
adantr |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → ( ℎ − 1 ) ∈ ℝ ) |
317 |
278
|
adantr |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 𝑀 ∈ ℝ ) |
318 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) → 𝑖 ≤ ( ℎ − 1 ) ) |
319 |
318
|
adantl |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 𝑖 ≤ ( ℎ − 1 ) ) |
320 |
246
|
ltm1d |
⊢ ( ℎ ∈ ( 0 ..^ 𝑀 ) → ( ℎ − 1 ) < ℎ ) |
321 |
315 246 278 320 283
|
lttrd |
⊢ ( ℎ ∈ ( 0 ..^ 𝑀 ) → ( ℎ − 1 ) < 𝑀 ) |
322 |
321
|
adantr |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → ( ℎ − 1 ) < 𝑀 ) |
323 |
313 316 317 319 322
|
lelttrd |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 𝑖 < 𝑀 ) |
324 |
323
|
adantll |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 𝑖 < 𝑀 ) |
325 |
324
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 𝑖 < 𝑀 ) |
326 |
|
elfzo2 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↔ ( 𝑖 ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀 ) ) |
327 |
309 311 325 326
|
syl3anbrc |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
328 |
169 26
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ 𝑖 ) ∈ ℝ ) |
329 |
47
|
simprd |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
330 |
329
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
331 |
328 190 330
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ 𝑖 ) ≤ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
332 |
292 327 331
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → ( 𝑉 ‘ 𝑖 ) ≤ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
333 |
332
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑙 + 1 ) ≤ ℎ ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → ( 𝑉 ‘ 𝑖 ) ≤ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
334 |
256 291 333
|
monoord |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑙 + 1 ) ≤ ℎ ) → ( 𝑉 ‘ ( 𝑙 + 1 ) ) ≤ ( 𝑉 ‘ ℎ ) ) |
335 |
249 334
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ℎ < ( 𝑙 + 1 ) ) → ( 𝑉 ‘ ( 𝑙 + 1 ) ) ≤ ( 𝑉 ‘ ℎ ) ) |
336 |
236 241 335
|
lensymd |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ℎ < ( 𝑙 + 1 ) ) → ¬ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) |
337 |
336
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ∧ ¬ ℎ < ( 𝑙 + 1 ) ) → ¬ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) |
338 |
230 337
|
condan |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) → ℎ < ( 𝑙 + 1 ) ) |
339 |
|
zleltp1 |
⊢ ( ( ℎ ∈ ℤ ∧ 𝑙 ∈ ℤ ) → ( ℎ ≤ 𝑙 ↔ ℎ < ( 𝑙 + 1 ) ) ) |
340 |
227 229 339
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) → ( ℎ ≤ 𝑙 ↔ ℎ < ( 𝑙 + 1 ) ) ) |
341 |
338 340
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) → ℎ ≤ 𝑙 ) |
342 |
|
eluz2 |
⊢ ( 𝑙 ∈ ( ℤ≥ ‘ ℎ ) ↔ ( ℎ ∈ ℤ ∧ 𝑙 ∈ ℤ ∧ ℎ ≤ 𝑙 ) ) |
343 |
227 229 341 342
|
syl3anbrc |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) → 𝑙 ∈ ( ℤ≥ ‘ ℎ ) ) |
344 |
25
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 𝑉 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
345 |
|
0zd |
⊢ ( ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 0 ∈ ℤ ) |
346 |
259
|
ad2antrr |
⊢ ( ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 𝑀 ∈ ℤ ) |
347 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( ℎ ... 𝑙 ) → 𝑖 ∈ ℤ ) |
348 |
347
|
adantl |
⊢ ( ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 𝑖 ∈ ℤ ) |
349 |
|
0red |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 0 ∈ ℝ ) |
350 |
246
|
adantr |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → ℎ ∈ ℝ ) |
351 |
347
|
zred |
⊢ ( 𝑖 ∈ ( ℎ ... 𝑙 ) → 𝑖 ∈ ℝ ) |
352 |
351
|
adantl |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 𝑖 ∈ ℝ ) |
353 |
|
elfzole1 |
⊢ ( ℎ ∈ ( 0 ..^ 𝑀 ) → 0 ≤ ℎ ) |
354 |
353
|
adantr |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 0 ≤ ℎ ) |
355 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( ℎ ... 𝑙 ) → ℎ ≤ 𝑖 ) |
356 |
355
|
adantl |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → ℎ ≤ 𝑖 ) |
357 |
349 350 352 354 356
|
letrd |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 0 ≤ 𝑖 ) |
358 |
357
|
adantlr |
⊢ ( ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 0 ≤ 𝑖 ) |
359 |
351
|
adantl |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 𝑖 ∈ ℝ ) |
360 |
310
|
zred |
⊢ ( 𝑙 ∈ ( 0 ..^ 𝑀 ) → 𝑀 ∈ ℝ ) |
361 |
360
|
adantr |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 𝑀 ∈ ℝ ) |
362 |
242
|
adantr |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 𝑙 ∈ ℝ ) |
363 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( ℎ ... 𝑙 ) → 𝑖 ≤ 𝑙 ) |
364 |
363
|
adantl |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 𝑖 ≤ 𝑙 ) |
365 |
|
elfzolt2 |
⊢ ( 𝑙 ∈ ( 0 ..^ 𝑀 ) → 𝑙 < 𝑀 ) |
366 |
365
|
adantr |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 𝑙 < 𝑀 ) |
367 |
359 362 361 364 366
|
lelttrd |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 𝑖 < 𝑀 ) |
368 |
359 361 367
|
ltled |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 𝑖 ≤ 𝑀 ) |
369 |
368
|
adantll |
⊢ ( ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 𝑖 ≤ 𝑀 ) |
370 |
345 346 348 358 369
|
elfzd |
⊢ ( ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
371 |
370
|
adantlll |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
372 |
344 371
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → ( 𝑉 ‘ 𝑖 ) ∈ ℝ ) |
373 |
372
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → ( 𝑉 ‘ 𝑖 ) ∈ ℝ ) |
374 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝜑 ) |
375 |
|
0zd |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 0 ∈ ℤ ) |
376 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) → 𝑖 ∈ ℤ ) |
377 |
376
|
adantl |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝑖 ∈ ℤ ) |
378 |
|
0red |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 0 ∈ ℝ ) |
379 |
246
|
adantr |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → ℎ ∈ ℝ ) |
380 |
377
|
zred |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝑖 ∈ ℝ ) |
381 |
353
|
adantr |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 0 ≤ ℎ ) |
382 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) → ℎ ≤ 𝑖 ) |
383 |
382
|
adantl |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → ℎ ≤ 𝑖 ) |
384 |
378 379 380 381 383
|
letrd |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 0 ≤ 𝑖 ) |
385 |
375 377 384 307
|
syl3anbrc |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝑖 ∈ ( ℤ≥ ‘ 0 ) ) |
386 |
385
|
adantll |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝑖 ∈ ( ℤ≥ ‘ 0 ) ) |
387 |
386
|
ad4ant14 |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝑖 ∈ ( ℤ≥ ‘ 0 ) ) |
388 |
310
|
ad3antlr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝑀 ∈ ℤ ) |
389 |
376
|
zred |
⊢ ( 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) → 𝑖 ∈ ℝ ) |
390 |
389
|
adantl |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝑖 ∈ ℝ ) |
391 |
242
|
adantr |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝑙 ∈ ℝ ) |
392 |
360
|
adantr |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝑀 ∈ ℝ ) |
393 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) → 𝑖 ≤ ( 𝑙 − 1 ) ) |
394 |
393
|
adantl |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝑖 ≤ ( 𝑙 − 1 ) ) |
395 |
|
zltlem1 |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑙 ∈ ℤ ) → ( 𝑖 < 𝑙 ↔ 𝑖 ≤ ( 𝑙 − 1 ) ) ) |
396 |
376 228 395
|
syl2anr |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → ( 𝑖 < 𝑙 ↔ 𝑖 ≤ ( 𝑙 − 1 ) ) ) |
397 |
394 396
|
mpbird |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝑖 < 𝑙 ) |
398 |
365
|
adantr |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝑙 < 𝑀 ) |
399 |
390 391 392 397 398
|
lttrd |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝑖 < 𝑀 ) |
400 |
399
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝑖 < 𝑀 ) |
401 |
400
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝑖 < 𝑀 ) |
402 |
387 388 401 326
|
syl3anbrc |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
403 |
374 402 331
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → ( 𝑉 ‘ 𝑖 ) ≤ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
404 |
343 373 403
|
monoord |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) → ( 𝑉 ‘ ℎ ) ≤ ( 𝑉 ‘ 𝑙 ) ) |
405 |
225 404
|
chvarvv |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑘 ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) → ( 𝑉 ‘ 𝑘 ) ≤ ( 𝑉 ‘ 𝑙 ) ) |
406 |
217 405
|
chvarvv |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑘 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑉 ‘ 𝑘 ) ≤ ( 𝑉 ‘ 𝑖 ) ) |
407 |
110 112 208 406
|
syl21anc |
⊢ ( 𝜒 → ( 𝑉 ‘ 𝑘 ) ≤ ( 𝑉 ‘ 𝑖 ) ) |
408 |
107 112
|
jca |
⊢ ( 𝜒 → ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ) |
409 |
110 149
|
syl |
⊢ ( 𝜒 → ( 𝑄 ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
410 |
179
|
simpld |
⊢ ( 𝜒 → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑆 ‘ 𝐽 ) ) |
411 |
176 143 138 410 164
|
lelttrd |
⊢ ( 𝜒 → ( 𝑄 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
412 |
166
|
simprd |
⊢ ( 𝜒 → ( 𝑆 ‘ ( 𝐽 + 1 ) ) ≤ ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) |
413 |
176 138 409 411 412
|
ltletrd |
⊢ ( 𝜒 → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) |
414 |
176 409 118 413
|
ltadd2dd |
⊢ ( 𝜒 → ( 𝑋 + ( 𝑄 ‘ 𝑖 ) ) < ( 𝑋 + ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) |
415 |
175
|
oveq2d |
⊢ ( 𝜒 → ( 𝑋 + ( 𝑄 ‘ 𝑖 ) ) = ( 𝑋 + ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) ) |
416 |
107 172 26
|
syl2anc |
⊢ ( 𝜒 → ( 𝑉 ‘ 𝑖 ) ∈ ℝ ) |
417 |
416
|
recnd |
⊢ ( 𝜒 → ( 𝑉 ‘ 𝑖 ) ∈ ℂ ) |
418 |
184 417
|
pncan3d |
⊢ ( 𝜒 → ( 𝑋 + ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) = ( 𝑉 ‘ 𝑖 ) ) |
419 |
415 418
|
eqtr2d |
⊢ ( 𝜒 → ( 𝑉 ‘ 𝑖 ) = ( 𝑋 + ( 𝑄 ‘ 𝑖 ) ) ) |
420 |
9
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 = ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) ) |
421 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝑘 + 1 ) → ( 𝑉 ‘ 𝑖 ) = ( 𝑉 ‘ ( 𝑘 + 1 ) ) ) |
422 |
421
|
oveq1d |
⊢ ( 𝑖 = ( 𝑘 + 1 ) → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) = ( ( 𝑉 ‘ ( 𝑘 + 1 ) ) − 𝑋 ) ) |
423 |
422
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 = ( 𝑘 + 1 ) ) → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) = ( ( 𝑉 ‘ ( 𝑘 + 1 ) ) − 𝑋 ) ) |
424 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → 𝑉 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
425 |
424 148
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
426 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → 𝑋 ∈ ℝ ) |
427 |
425 426
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑉 ‘ ( 𝑘 + 1 ) ) − 𝑋 ) ∈ ℝ ) |
428 |
420 423 148 427
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑉 ‘ ( 𝑘 + 1 ) ) − 𝑋 ) ) |
429 |
107 109 428
|
syl2anc |
⊢ ( 𝜒 → ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑉 ‘ ( 𝑘 + 1 ) ) − 𝑋 ) ) |
430 |
429
|
oveq2d |
⊢ ( 𝜒 → ( 𝑋 + ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) = ( 𝑋 + ( ( 𝑉 ‘ ( 𝑘 + 1 ) ) − 𝑋 ) ) ) |
431 |
110 425
|
syl |
⊢ ( 𝜒 → ( 𝑉 ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
432 |
431
|
recnd |
⊢ ( 𝜒 → ( 𝑉 ‘ ( 𝑘 + 1 ) ) ∈ ℂ ) |
433 |
184 432
|
pncan3d |
⊢ ( 𝜒 → ( 𝑋 + ( ( 𝑉 ‘ ( 𝑘 + 1 ) ) − 𝑋 ) ) = ( 𝑉 ‘ ( 𝑘 + 1 ) ) ) |
434 |
430 433
|
eqtr2d |
⊢ ( 𝜒 → ( 𝑉 ‘ ( 𝑘 + 1 ) ) = ( 𝑋 + ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) |
435 |
414 419 434
|
3brtr4d |
⊢ ( 𝜒 → ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑘 + 1 ) ) ) |
436 |
|
eleq1w |
⊢ ( 𝑙 = 𝑘 → ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ↔ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ) |
437 |
436
|
anbi2d |
⊢ ( 𝑙 = 𝑘 → ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ) ) |
438 |
|
oveq1 |
⊢ ( 𝑙 = 𝑘 → ( 𝑙 + 1 ) = ( 𝑘 + 1 ) ) |
439 |
438
|
fveq2d |
⊢ ( 𝑙 = 𝑘 → ( 𝑉 ‘ ( 𝑙 + 1 ) ) = ( 𝑉 ‘ ( 𝑘 + 1 ) ) ) |
440 |
439
|
breq2d |
⊢ ( 𝑙 = 𝑘 → ( ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ↔ ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑘 + 1 ) ) ) ) |
441 |
437 440
|
anbi12d |
⊢ ( 𝑙 = 𝑘 → ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ↔ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑘 + 1 ) ) ) ) ) |
442 |
|
fveq2 |
⊢ ( 𝑙 = 𝑘 → ( 𝑉 ‘ 𝑙 ) = ( 𝑉 ‘ 𝑘 ) ) |
443 |
442
|
breq2d |
⊢ ( 𝑙 = 𝑘 → ( ( 𝑉 ‘ 𝑖 ) ≤ ( 𝑉 ‘ 𝑙 ) ↔ ( 𝑉 ‘ 𝑖 ) ≤ ( 𝑉 ‘ 𝑘 ) ) ) |
444 |
441 443
|
imbi12d |
⊢ ( 𝑙 = 𝑘 → ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) → ( 𝑉 ‘ 𝑖 ) ≤ ( 𝑉 ‘ 𝑙 ) ) ↔ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑘 + 1 ) ) ) → ( 𝑉 ‘ 𝑖 ) ≤ ( 𝑉 ‘ 𝑘 ) ) ) ) |
445 |
|
eleq1w |
⊢ ( ℎ = 𝑖 → ( ℎ ∈ ( 0 ..^ 𝑀 ) ↔ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ) |
446 |
445
|
anbi2d |
⊢ ( ℎ = 𝑖 → ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ↔ ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ) ) |
447 |
446
|
anbi1d |
⊢ ( ℎ = 𝑖 → ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ) ) |
448 |
|
fveq2 |
⊢ ( ℎ = 𝑖 → ( 𝑉 ‘ ℎ ) = ( 𝑉 ‘ 𝑖 ) ) |
449 |
448
|
breq1d |
⊢ ( ℎ = 𝑖 → ( ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ↔ ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ) |
450 |
447 449
|
anbi12d |
⊢ ( ℎ = 𝑖 → ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ↔ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ) ) |
451 |
448
|
breq1d |
⊢ ( ℎ = 𝑖 → ( ( 𝑉 ‘ ℎ ) ≤ ( 𝑉 ‘ 𝑙 ) ↔ ( 𝑉 ‘ 𝑖 ) ≤ ( 𝑉 ‘ 𝑙 ) ) ) |
452 |
450 451
|
imbi12d |
⊢ ( ℎ = 𝑖 → ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) → ( 𝑉 ‘ ℎ ) ≤ ( 𝑉 ‘ 𝑙 ) ) ↔ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) → ( 𝑉 ‘ 𝑖 ) ≤ ( 𝑉 ‘ 𝑙 ) ) ) ) |
453 |
452 404
|
chvarvv |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) → ( 𝑉 ‘ 𝑖 ) ≤ ( 𝑉 ‘ 𝑙 ) ) |
454 |
444 453
|
chvarvv |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑘 + 1 ) ) ) → ( 𝑉 ‘ 𝑖 ) ≤ ( 𝑉 ‘ 𝑘 ) ) |
455 |
408 109 435 454
|
syl21anc |
⊢ ( 𝜒 → ( 𝑉 ‘ 𝑖 ) ≤ ( 𝑉 ‘ 𝑘 ) ) |
456 |
117 416
|
letri3d |
⊢ ( 𝜒 → ( ( 𝑉 ‘ 𝑘 ) = ( 𝑉 ‘ 𝑖 ) ↔ ( ( 𝑉 ‘ 𝑘 ) ≤ ( 𝑉 ‘ 𝑖 ) ∧ ( 𝑉 ‘ 𝑖 ) ≤ ( 𝑉 ‘ 𝑘 ) ) ) ) |
457 |
407 455 456
|
mpbir2and |
⊢ ( 𝜒 → ( 𝑉 ‘ 𝑘 ) = ( 𝑉 ‘ 𝑖 ) ) |
458 |
2 3 4
|
fourierdlem34 |
⊢ ( 𝜑 → 𝑉 : ( 0 ... 𝑀 ) –1-1→ ℝ ) |
459 |
107 458
|
syl |
⊢ ( 𝜒 → 𝑉 : ( 0 ... 𝑀 ) –1-1→ ℝ ) |
460 |
|
f1fveq |
⊢ ( ( 𝑉 : ( 0 ... 𝑀 ) –1-1→ ℝ ∧ ( 𝑘 ∈ ( 0 ... 𝑀 ) ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ) → ( ( 𝑉 ‘ 𝑘 ) = ( 𝑉 ‘ 𝑖 ) ↔ 𝑘 = 𝑖 ) ) |
461 |
459 115 172 460
|
syl12anc |
⊢ ( 𝜒 → ( ( 𝑉 ‘ 𝑘 ) = ( 𝑉 ‘ 𝑖 ) ↔ 𝑘 = 𝑖 ) ) |
462 |
457 461
|
mpbid |
⊢ ( 𝜒 → 𝑘 = 𝑖 ) |
463 |
15 462
|
sylbir |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) → 𝑘 = 𝑖 ) |
464 |
463
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) → 𝑘 = 𝑖 ) ) |
465 |
|
simpl |
⊢ ( ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑘 = 𝑖 ) → ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
466 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ 𝑖 ) ) |
467 |
|
oveq1 |
⊢ ( 𝑘 = 𝑖 → ( 𝑘 + 1 ) = ( 𝑖 + 1 ) ) |
468 |
467
|
fveq2d |
⊢ ( 𝑘 = 𝑖 → ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
469 |
466 468
|
oveq12d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
470 |
469
|
eqcomd |
⊢ ( 𝑘 = 𝑖 → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) |
471 |
470
|
adantl |
⊢ ( ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑘 = 𝑖 ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) |
472 |
465 471
|
sseqtrd |
⊢ ( ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑘 = 𝑖 ) → ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) |
473 |
472
|
ex |
⊢ ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑘 = 𝑖 → ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) ) |
474 |
473
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑘 = 𝑖 → ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) ) |
475 |
464 474
|
impbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ↔ 𝑘 = 𝑖 ) ) |
476 |
475
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ 𝑀 ) ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ↔ 𝑘 = 𝑖 ) ) |
477 |
476
|
ex |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ 𝑀 ) ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ↔ 𝑘 = 𝑖 ) ) ) |
478 |
477
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∀ 𝑘 ∈ ( 0 ..^ 𝑀 ) ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ↔ 𝑘 = 𝑖 ) ) ) |
479 |
104 478
|
mpd |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∀ 𝑘 ∈ ( 0 ..^ 𝑀 ) ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ↔ 𝑘 = 𝑖 ) ) |
480 |
|
reu6 |
⊢ ( ∃! 𝑘 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ↔ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∀ 𝑘 ∈ ( 0 ..^ 𝑀 ) ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ↔ 𝑘 = 𝑖 ) ) |
481 |
479 480
|
sylibr |
⊢ ( 𝜑 → ∃! 𝑘 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) |
482 |
|
fveq2 |
⊢ ( 𝑖 = 𝑘 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑘 ) ) |
483 |
|
oveq1 |
⊢ ( 𝑖 = 𝑘 → ( 𝑖 + 1 ) = ( 𝑘 + 1 ) ) |
484 |
483
|
fveq2d |
⊢ ( 𝑖 = 𝑘 → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) |
485 |
482 484
|
oveq12d |
⊢ ( 𝑖 = 𝑘 → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) |
486 |
485
|
sseq2d |
⊢ ( 𝑖 = 𝑘 → ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) ) |
487 |
486
|
cbvreuvw |
⊢ ( ∃! 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ∃! 𝑘 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) |
488 |
481 487
|
sylibr |
⊢ ( 𝜑 → ∃! 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
489 |
|
riotacl |
⊢ ( ∃! 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( ℩ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( 0 ..^ 𝑀 ) ) |
490 |
488 489
|
syl |
⊢ ( 𝜑 → ( ℩ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( 0 ..^ 𝑀 ) ) |
491 |
14 490
|
eqeltrid |
⊢ ( 𝜑 → 𝑈 ∈ ( 0 ..^ 𝑀 ) ) |
492 |
14
|
eqcomi |
⊢ ( ℩ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = 𝑈 |
493 |
492
|
a1i |
⊢ ( 𝜑 → ( ℩ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = 𝑈 ) |
494 |
|
fveq2 |
⊢ ( 𝑖 = 𝑈 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑈 ) ) |
495 |
|
oveq1 |
⊢ ( 𝑖 = 𝑈 → ( 𝑖 + 1 ) = ( 𝑈 + 1 ) ) |
496 |
495
|
fveq2d |
⊢ ( 𝑖 = 𝑈 → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑄 ‘ ( 𝑈 + 1 ) ) ) |
497 |
494 496
|
oveq12d |
⊢ ( 𝑖 = 𝑈 → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑄 ‘ 𝑈 ) (,) ( 𝑄 ‘ ( 𝑈 + 1 ) ) ) ) |
498 |
497
|
sseq2d |
⊢ ( 𝑖 = 𝑈 → ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑈 ) (,) ( 𝑄 ‘ ( 𝑈 + 1 ) ) ) ) ) |
499 |
498
|
riota2 |
⊢ ( ( 𝑈 ∈ ( 0 ..^ 𝑀 ) ∧ ∃! 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑈 ) (,) ( 𝑄 ‘ ( 𝑈 + 1 ) ) ) ↔ ( ℩ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = 𝑈 ) ) |
500 |
491 488 499
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑈 ) (,) ( 𝑄 ‘ ( 𝑈 + 1 ) ) ) ↔ ( ℩ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = 𝑈 ) ) |
501 |
493 500
|
mpbird |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑈 ) (,) ( 𝑄 ‘ ( 𝑈 + 1 ) ) ) ) |
502 |
491 501
|
jca |
⊢ ( 𝜑 → ( 𝑈 ∈ ( 0 ..^ 𝑀 ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑈 ) (,) ( 𝑄 ‘ ( 𝑈 + 1 ) ) ) ) ) |