Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem52.tf |
⊢ ( 𝜑 → 𝑇 ∈ Fin ) |
2 |
|
fourierdlem52.n |
⊢ 𝑁 = ( ( ♯ ‘ 𝑇 ) − 1 ) |
3 |
|
fourierdlem52.s |
⊢ 𝑆 = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝑇 ) ) |
4 |
|
fourierdlem52.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
5 |
|
fourierdlem52.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
6 |
|
fourierdlem52.t |
⊢ ( 𝜑 → 𝑇 ⊆ ( 𝐴 [,] 𝐵 ) ) |
7 |
|
fourierdlem52.at |
⊢ ( 𝜑 → 𝐴 ∈ 𝑇 ) |
8 |
|
fourierdlem52.bt |
⊢ ( 𝜑 → 𝐵 ∈ 𝑇 ) |
9 |
4 5
|
iccssred |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
10 |
6 9
|
sstrd |
⊢ ( 𝜑 → 𝑇 ⊆ ℝ ) |
11 |
1 10 3 2
|
fourierdlem36 |
⊢ ( 𝜑 → 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝑇 ) ) |
12 |
|
isof1o |
⊢ ( 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝑇 ) → 𝑆 : ( 0 ... 𝑁 ) –1-1-onto→ 𝑇 ) |
13 |
|
f1of |
⊢ ( 𝑆 : ( 0 ... 𝑁 ) –1-1-onto→ 𝑇 → 𝑆 : ( 0 ... 𝑁 ) ⟶ 𝑇 ) |
14 |
11 12 13
|
3syl |
⊢ ( 𝜑 → 𝑆 : ( 0 ... 𝑁 ) ⟶ 𝑇 ) |
15 |
14 6
|
fssd |
⊢ ( 𝜑 → 𝑆 : ( 0 ... 𝑁 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
16 |
|
f1ofo |
⊢ ( 𝑆 : ( 0 ... 𝑁 ) –1-1-onto→ 𝑇 → 𝑆 : ( 0 ... 𝑁 ) –onto→ 𝑇 ) |
17 |
11 12 16
|
3syl |
⊢ ( 𝜑 → 𝑆 : ( 0 ... 𝑁 ) –onto→ 𝑇 ) |
18 |
|
foelrn |
⊢ ( ( 𝑆 : ( 0 ... 𝑁 ) –onto→ 𝑇 ∧ 𝐴 ∈ 𝑇 ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝐴 = ( 𝑆 ‘ 𝑗 ) ) |
19 |
17 7 18
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝐴 = ( 𝑆 ‘ 𝑗 ) ) |
20 |
|
elfzle1 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 0 ≤ 𝑗 ) |
21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 0 ≤ 𝑗 ) |
22 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝑇 ) ) |
23 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
24 |
10 23
|
sstrdi |
⊢ ( 𝜑 → 𝑇 ⊆ ℝ* ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑇 ⊆ ℝ* ) |
26 |
|
fzssz |
⊢ ( 0 ... 𝑁 ) ⊆ ℤ |
27 |
|
zssre |
⊢ ℤ ⊆ ℝ |
28 |
27 23
|
sstri |
⊢ ℤ ⊆ ℝ* |
29 |
26 28
|
sstri |
⊢ ( 0 ... 𝑁 ) ⊆ ℝ* |
30 |
25 29
|
jctil |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 0 ... 𝑁 ) ⊆ ℝ* ∧ 𝑇 ⊆ ℝ* ) ) |
31 |
|
hashcl |
⊢ ( 𝑇 ∈ Fin → ( ♯ ‘ 𝑇 ) ∈ ℕ0 ) |
32 |
1 31
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑇 ) ∈ ℕ0 ) |
33 |
7
|
ne0d |
⊢ ( 𝜑 → 𝑇 ≠ ∅ ) |
34 |
|
hashge1 |
⊢ ( ( 𝑇 ∈ Fin ∧ 𝑇 ≠ ∅ ) → 1 ≤ ( ♯ ‘ 𝑇 ) ) |
35 |
1 33 34
|
syl2anc |
⊢ ( 𝜑 → 1 ≤ ( ♯ ‘ 𝑇 ) ) |
36 |
|
elnnnn0c |
⊢ ( ( ♯ ‘ 𝑇 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝑇 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝑇 ) ) ) |
37 |
32 35 36
|
sylanbrc |
⊢ ( 𝜑 → ( ♯ ‘ 𝑇 ) ∈ ℕ ) |
38 |
|
nnm1nn0 |
⊢ ( ( ♯ ‘ 𝑇 ) ∈ ℕ → ( ( ♯ ‘ 𝑇 ) − 1 ) ∈ ℕ0 ) |
39 |
37 38
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑇 ) − 1 ) ∈ ℕ0 ) |
40 |
2 39
|
eqeltrid |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
41 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
42 |
40 41
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
43 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → 0 ∈ ( 0 ... 𝑁 ) ) |
44 |
42 43
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑁 ) ) |
45 |
44
|
anim1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 0 ∈ ( 0 ... 𝑁 ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ) |
46 |
|
leisorel |
⊢ ( ( 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝑇 ) ∧ ( ( 0 ... 𝑁 ) ⊆ ℝ* ∧ 𝑇 ⊆ ℝ* ) ∧ ( 0 ∈ ( 0 ... 𝑁 ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ) → ( 0 ≤ 𝑗 ↔ ( 𝑆 ‘ 0 ) ≤ ( 𝑆 ‘ 𝑗 ) ) ) |
47 |
22 30 45 46
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 0 ≤ 𝑗 ↔ ( 𝑆 ‘ 0 ) ≤ ( 𝑆 ‘ 𝑗 ) ) ) |
48 |
21 47
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝑆 ‘ 0 ) ≤ ( 𝑆 ‘ 𝑗 ) ) |
49 |
48
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝐴 = ( 𝑆 ‘ 𝑗 ) ) → ( 𝑆 ‘ 0 ) ≤ ( 𝑆 ‘ 𝑗 ) ) |
50 |
|
eqcom |
⊢ ( 𝐴 = ( 𝑆 ‘ 𝑗 ) ↔ ( 𝑆 ‘ 𝑗 ) = 𝐴 ) |
51 |
50
|
biimpi |
⊢ ( 𝐴 = ( 𝑆 ‘ 𝑗 ) → ( 𝑆 ‘ 𝑗 ) = 𝐴 ) |
52 |
51
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝐴 = ( 𝑆 ‘ 𝑗 ) ) → ( 𝑆 ‘ 𝑗 ) = 𝐴 ) |
53 |
49 52
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝐴 = ( 𝑆 ‘ 𝑗 ) ) → ( 𝑆 ‘ 0 ) ≤ 𝐴 ) |
54 |
53
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝐴 = ( 𝑆 ‘ 𝑗 ) → ( 𝑆 ‘ 0 ) ≤ 𝐴 ) ) |
55 |
19 54
|
mpd |
⊢ ( 𝜑 → ( 𝑆 ‘ 0 ) ≤ 𝐴 ) |
56 |
4
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
57 |
5
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
58 |
15 44
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑆 ‘ 0 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
59 |
|
iccgelb |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝑆 ‘ 0 ) ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ ( 𝑆 ‘ 0 ) ) |
60 |
56 57 58 59
|
syl3anc |
⊢ ( 𝜑 → 𝐴 ≤ ( 𝑆 ‘ 0 ) ) |
61 |
9 58
|
sseldd |
⊢ ( 𝜑 → ( 𝑆 ‘ 0 ) ∈ ℝ ) |
62 |
61 4
|
letri3d |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 0 ) = 𝐴 ↔ ( ( 𝑆 ‘ 0 ) ≤ 𝐴 ∧ 𝐴 ≤ ( 𝑆 ‘ 0 ) ) ) ) |
63 |
55 60 62
|
mpbir2and |
⊢ ( 𝜑 → ( 𝑆 ‘ 0 ) = 𝐴 ) |
64 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → 𝑁 ∈ ( 0 ... 𝑁 ) ) |
65 |
42 64
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ... 𝑁 ) ) |
66 |
15 65
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑁 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
67 |
|
iccleub |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝑆 ‘ 𝑁 ) ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑆 ‘ 𝑁 ) ≤ 𝐵 ) |
68 |
56 57 66 67
|
syl3anc |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑁 ) ≤ 𝐵 ) |
69 |
|
foelrn |
⊢ ( ( 𝑆 : ( 0 ... 𝑁 ) –onto→ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝐵 = ( 𝑆 ‘ 𝑗 ) ) |
70 |
17 8 69
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝐵 = ( 𝑆 ‘ 𝑗 ) ) |
71 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝐵 = ( 𝑆 ‘ 𝑗 ) ) → 𝐵 = ( 𝑆 ‘ 𝑗 ) ) |
72 |
|
elfzle2 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 ≤ 𝑁 ) |
73 |
72
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝐵 = ( 𝑆 ‘ 𝑗 ) ) → 𝑗 ≤ 𝑁 ) |
74 |
11
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝐵 = ( 𝑆 ‘ 𝑗 ) ) → 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝑇 ) ) |
75 |
30
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝐵 = ( 𝑆 ‘ 𝑗 ) ) → ( ( 0 ... 𝑁 ) ⊆ ℝ* ∧ 𝑇 ⊆ ℝ* ) ) |
76 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝐵 = ( 𝑆 ‘ 𝑗 ) ) → 𝑗 ∈ ( 0 ... 𝑁 ) ) |
77 |
65
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝐵 = ( 𝑆 ‘ 𝑗 ) ) → 𝑁 ∈ ( 0 ... 𝑁 ) ) |
78 |
|
leisorel |
⊢ ( ( 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝑇 ) ∧ ( ( 0 ... 𝑁 ) ⊆ ℝ* ∧ 𝑇 ⊆ ℝ* ) ∧ ( 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑗 ≤ 𝑁 ↔ ( 𝑆 ‘ 𝑗 ) ≤ ( 𝑆 ‘ 𝑁 ) ) ) |
79 |
74 75 76 77 78
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝐵 = ( 𝑆 ‘ 𝑗 ) ) → ( 𝑗 ≤ 𝑁 ↔ ( 𝑆 ‘ 𝑗 ) ≤ ( 𝑆 ‘ 𝑁 ) ) ) |
80 |
73 79
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝐵 = ( 𝑆 ‘ 𝑗 ) ) → ( 𝑆 ‘ 𝑗 ) ≤ ( 𝑆 ‘ 𝑁 ) ) |
81 |
71 80
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝐵 = ( 𝑆 ‘ 𝑗 ) ) → 𝐵 ≤ ( 𝑆 ‘ 𝑁 ) ) |
82 |
81
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝐵 = ( 𝑆 ‘ 𝑗 ) → 𝐵 ≤ ( 𝑆 ‘ 𝑁 ) ) ) |
83 |
70 82
|
mpd |
⊢ ( 𝜑 → 𝐵 ≤ ( 𝑆 ‘ 𝑁 ) ) |
84 |
9 66
|
sseldd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑁 ) ∈ ℝ ) |
85 |
84 5
|
letri3d |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑁 ) = 𝐵 ↔ ( ( 𝑆 ‘ 𝑁 ) ≤ 𝐵 ∧ 𝐵 ≤ ( 𝑆 ‘ 𝑁 ) ) ) ) |
86 |
68 83 85
|
mpbir2and |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑁 ) = 𝐵 ) |
87 |
15 63 86
|
jca31 |
⊢ ( 𝜑 → ( ( 𝑆 : ( 0 ... 𝑁 ) ⟶ ( 𝐴 [,] 𝐵 ) ∧ ( 𝑆 ‘ 0 ) = 𝐴 ) ∧ ( 𝑆 ‘ 𝑁 ) = 𝐵 ) ) |