Metamath Proof Explorer


Theorem fourierdlem53

Description: The limit of F ( s ) at ( X + D ) is the limit of F ( X + s ) at D . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem53.1 ( 𝜑𝐹 : ℝ ⟶ ℝ )
fourierdlem53.2 ( 𝜑𝑋 ∈ ℝ )
fourierdlem53.3 ( 𝜑𝐴 ⊆ ℝ )
fourierdlem53.g 𝐺 = ( 𝑠𝐴 ↦ ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) )
fourierdlem53.xps ( ( 𝜑𝑠𝐴 ) → ( 𝑋 + 𝑠 ) ∈ 𝐵 )
fourierdlem53.b ( 𝜑𝐵 ⊆ ℝ )
fourierdlem53.sned ( ( 𝜑𝑠𝐴 ) → 𝑠𝐷 )
fourierdlem53.c ( 𝜑𝐶 ∈ ( ( 𝐹𝐵 ) lim ( 𝑋 + 𝐷 ) ) )
fourierdlem53.d ( 𝜑𝐷 ∈ ℂ )
Assertion fourierdlem53 ( 𝜑𝐶 ∈ ( 𝐺 lim 𝐷 ) )

Proof

Step Hyp Ref Expression
1 fourierdlem53.1 ( 𝜑𝐹 : ℝ ⟶ ℝ )
2 fourierdlem53.2 ( 𝜑𝑋 ∈ ℝ )
3 fourierdlem53.3 ( 𝜑𝐴 ⊆ ℝ )
4 fourierdlem53.g 𝐺 = ( 𝑠𝐴 ↦ ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) )
5 fourierdlem53.xps ( ( 𝜑𝑠𝐴 ) → ( 𝑋 + 𝑠 ) ∈ 𝐵 )
6 fourierdlem53.b ( 𝜑𝐵 ⊆ ℝ )
7 fourierdlem53.sned ( ( 𝜑𝑠𝐴 ) → 𝑠𝐷 )
8 fourierdlem53.c ( 𝜑𝐶 ∈ ( ( 𝐹𝐵 ) lim ( 𝑋 + 𝐷 ) ) )
9 fourierdlem53.d ( 𝜑𝐷 ∈ ℂ )
10 1 6 fssresd ( 𝜑 → ( 𝐹𝐵 ) : 𝐵 ⟶ ℝ )
11 10 fdmd ( 𝜑 → dom ( 𝐹𝐵 ) = 𝐵 )
12 11 eqcomd ( 𝜑𝐵 = dom ( 𝐹𝐵 ) )
13 12 adantr ( ( 𝜑𝑠𝐴 ) → 𝐵 = dom ( 𝐹𝐵 ) )
14 5 13 eleqtrd ( ( 𝜑𝑠𝐴 ) → ( 𝑋 + 𝑠 ) ∈ dom ( 𝐹𝐵 ) )
15 2 recnd ( 𝜑𝑋 ∈ ℂ )
16 15 adantr ( ( 𝜑𝑠𝐴 ) → 𝑋 ∈ ℂ )
17 3 sselda ( ( 𝜑𝑠𝐴 ) → 𝑠 ∈ ℝ )
18 17 recnd ( ( 𝜑𝑠𝐴 ) → 𝑠 ∈ ℂ )
19 9 adantr ( ( 𝜑𝑠𝐴 ) → 𝐷 ∈ ℂ )
20 16 18 19 7 addneintrd ( ( 𝜑𝑠𝐴 ) → ( 𝑋 + 𝑠 ) ≠ ( 𝑋 + 𝐷 ) )
21 20 neneqd ( ( 𝜑𝑠𝐴 ) → ¬ ( 𝑋 + 𝑠 ) = ( 𝑋 + 𝐷 ) )
22 2 adantr ( ( 𝜑𝑠𝐴 ) → 𝑋 ∈ ℝ )
23 22 17 readdcld ( ( 𝜑𝑠𝐴 ) → ( 𝑋 + 𝑠 ) ∈ ℝ )
24 elsng ( ( 𝑋 + 𝑠 ) ∈ ℝ → ( ( 𝑋 + 𝑠 ) ∈ { ( 𝑋 + 𝐷 ) } ↔ ( 𝑋 + 𝑠 ) = ( 𝑋 + 𝐷 ) ) )
25 23 24 syl ( ( 𝜑𝑠𝐴 ) → ( ( 𝑋 + 𝑠 ) ∈ { ( 𝑋 + 𝐷 ) } ↔ ( 𝑋 + 𝑠 ) = ( 𝑋 + 𝐷 ) ) )
26 21 25 mtbird ( ( 𝜑𝑠𝐴 ) → ¬ ( 𝑋 + 𝑠 ) ∈ { ( 𝑋 + 𝐷 ) } )
27 14 26 eldifd ( ( 𝜑𝑠𝐴 ) → ( 𝑋 + 𝑠 ) ∈ ( dom ( 𝐹𝐵 ) ∖ { ( 𝑋 + 𝐷 ) } ) )
28 27 ralrimiva ( 𝜑 → ∀ 𝑠𝐴 ( 𝑋 + 𝑠 ) ∈ ( dom ( 𝐹𝐵 ) ∖ { ( 𝑋 + 𝐷 ) } ) )
29 eqid ( 𝑠𝐴 ↦ ( 𝑋 + 𝑠 ) ) = ( 𝑠𝐴 ↦ ( 𝑋 + 𝑠 ) )
30 29 rnmptss ( ∀ 𝑠𝐴 ( 𝑋 + 𝑠 ) ∈ ( dom ( 𝐹𝐵 ) ∖ { ( 𝑋 + 𝐷 ) } ) → ran ( 𝑠𝐴 ↦ ( 𝑋 + 𝑠 ) ) ⊆ ( dom ( 𝐹𝐵 ) ∖ { ( 𝑋 + 𝐷 ) } ) )
31 28 30 syl ( 𝜑 → ran ( 𝑠𝐴 ↦ ( 𝑋 + 𝑠 ) ) ⊆ ( dom ( 𝐹𝐵 ) ∖ { ( 𝑋 + 𝐷 ) } ) )
32 eqid ( 𝑠𝐴𝑋 ) = ( 𝑠𝐴𝑋 )
33 eqid ( 𝑠𝐴𝑠 ) = ( 𝑠𝐴𝑠 )
34 ax-resscn ℝ ⊆ ℂ
35 3 34 sstrdi ( 𝜑𝐴 ⊆ ℂ )
36 32 35 15 9 constlimc ( 𝜑𝑋 ∈ ( ( 𝑠𝐴𝑋 ) lim 𝐷 ) )
37 35 33 9 idlimc ( 𝜑𝐷 ∈ ( ( 𝑠𝐴𝑠 ) lim 𝐷 ) )
38 32 33 29 16 18 36 37 addlimc ( 𝜑 → ( 𝑋 + 𝐷 ) ∈ ( ( 𝑠𝐴 ↦ ( 𝑋 + 𝑠 ) ) lim 𝐷 ) )
39 31 38 8 limccog ( 𝜑𝐶 ∈ ( ( ( 𝐹𝐵 ) ∘ ( 𝑠𝐴 ↦ ( 𝑋 + 𝑠 ) ) ) lim 𝐷 ) )
40 nfv 𝑠 𝜑
41 40 29 5 rnmptssd ( 𝜑 → ran ( 𝑠𝐴 ↦ ( 𝑋 + 𝑠 ) ) ⊆ 𝐵 )
42 cores ( ran ( 𝑠𝐴 ↦ ( 𝑋 + 𝑠 ) ) ⊆ 𝐵 → ( ( 𝐹𝐵 ) ∘ ( 𝑠𝐴 ↦ ( 𝑋 + 𝑠 ) ) ) = ( 𝐹 ∘ ( 𝑠𝐴 ↦ ( 𝑋 + 𝑠 ) ) ) )
43 41 42 syl ( 𝜑 → ( ( 𝐹𝐵 ) ∘ ( 𝑠𝐴 ↦ ( 𝑋 + 𝑠 ) ) ) = ( 𝐹 ∘ ( 𝑠𝐴 ↦ ( 𝑋 + 𝑠 ) ) ) )
44 23 29 fmptd ( 𝜑 → ( 𝑠𝐴 ↦ ( 𝑋 + 𝑠 ) ) : 𝐴 ⟶ ℝ )
45 fcompt ( ( 𝐹 : ℝ ⟶ ℝ ∧ ( 𝑠𝐴 ↦ ( 𝑋 + 𝑠 ) ) : 𝐴 ⟶ ℝ ) → ( 𝐹 ∘ ( 𝑠𝐴 ↦ ( 𝑋 + 𝑠 ) ) ) = ( 𝑥𝐴 ↦ ( 𝐹 ‘ ( ( 𝑠𝐴 ↦ ( 𝑋 + 𝑠 ) ) ‘ 𝑥 ) ) ) )
46 1 44 45 syl2anc ( 𝜑 → ( 𝐹 ∘ ( 𝑠𝐴 ↦ ( 𝑋 + 𝑠 ) ) ) = ( 𝑥𝐴 ↦ ( 𝐹 ‘ ( ( 𝑠𝐴 ↦ ( 𝑋 + 𝑠 ) ) ‘ 𝑥 ) ) ) )
47 4 a1i ( 𝜑𝐺 = ( 𝑠𝐴 ↦ ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) )
48 oveq2 ( 𝑠 = 𝑥 → ( 𝑋 + 𝑠 ) = ( 𝑋 + 𝑥 ) )
49 48 fveq2d ( 𝑠 = 𝑥 → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) )
50 49 cbvmptv ( 𝑠𝐴 ↦ ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) = ( 𝑥𝐴 ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) )
51 50 a1i ( 𝜑 → ( 𝑠𝐴 ↦ ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) = ( 𝑥𝐴 ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) )
52 eqidd ( ( 𝜑𝑥𝐴 ) → ( 𝑠𝐴 ↦ ( 𝑋 + 𝑠 ) ) = ( 𝑠𝐴 ↦ ( 𝑋 + 𝑠 ) ) )
53 48 adantl ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑠 = 𝑥 ) → ( 𝑋 + 𝑠 ) = ( 𝑋 + 𝑥 ) )
54 simpr ( ( 𝜑𝑥𝐴 ) → 𝑥𝐴 )
55 2 adantr ( ( 𝜑𝑥𝐴 ) → 𝑋 ∈ ℝ )
56 3 sselda ( ( 𝜑𝑥𝐴 ) → 𝑥 ∈ ℝ )
57 55 56 readdcld ( ( 𝜑𝑥𝐴 ) → ( 𝑋 + 𝑥 ) ∈ ℝ )
58 52 53 54 57 fvmptd ( ( 𝜑𝑥𝐴 ) → ( ( 𝑠𝐴 ↦ ( 𝑋 + 𝑠 ) ) ‘ 𝑥 ) = ( 𝑋 + 𝑥 ) )
59 58 eqcomd ( ( 𝜑𝑥𝐴 ) → ( 𝑋 + 𝑥 ) = ( ( 𝑠𝐴 ↦ ( 𝑋 + 𝑠 ) ) ‘ 𝑥 ) )
60 59 fveq2d ( ( 𝜑𝑥𝐴 ) → ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) = ( 𝐹 ‘ ( ( 𝑠𝐴 ↦ ( 𝑋 + 𝑠 ) ) ‘ 𝑥 ) ) )
61 60 mpteq2dva ( 𝜑 → ( 𝑥𝐴 ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) = ( 𝑥𝐴 ↦ ( 𝐹 ‘ ( ( 𝑠𝐴 ↦ ( 𝑋 + 𝑠 ) ) ‘ 𝑥 ) ) ) )
62 47 51 61 3eqtrrd ( 𝜑 → ( 𝑥𝐴 ↦ ( 𝐹 ‘ ( ( 𝑠𝐴 ↦ ( 𝑋 + 𝑠 ) ) ‘ 𝑥 ) ) ) = 𝐺 )
63 43 46 62 3eqtrd ( 𝜑 → ( ( 𝐹𝐵 ) ∘ ( 𝑠𝐴 ↦ ( 𝑋 + 𝑠 ) ) ) = 𝐺 )
64 63 oveq1d ( 𝜑 → ( ( ( 𝐹𝐵 ) ∘ ( 𝑠𝐴 ↦ ( 𝑋 + 𝑠 ) ) ) lim 𝐷 ) = ( 𝐺 lim 𝐷 ) )
65 39 64 eleqtrd ( 𝜑𝐶 ∈ ( 𝐺 lim 𝐷 ) )