Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem53.1 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
2 |
|
fourierdlem53.2 |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
3 |
|
fourierdlem53.3 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
4 |
|
fourierdlem53.g |
⊢ 𝐺 = ( 𝑠 ∈ 𝐴 ↦ ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) |
5 |
|
fourierdlem53.xps |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( 𝑋 + 𝑠 ) ∈ 𝐵 ) |
6 |
|
fourierdlem53.b |
⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) |
7 |
|
fourierdlem53.sned |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 𝑠 ≠ 𝐷 ) |
8 |
|
fourierdlem53.c |
⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ ( 𝑋 + 𝐷 ) ) ) |
9 |
|
fourierdlem53.d |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
10 |
1 6
|
fssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ ℝ ) |
11 |
10
|
fdmd |
⊢ ( 𝜑 → dom ( 𝐹 ↾ 𝐵 ) = 𝐵 ) |
12 |
11
|
eqcomd |
⊢ ( 𝜑 → 𝐵 = dom ( 𝐹 ↾ 𝐵 ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 𝐵 = dom ( 𝐹 ↾ 𝐵 ) ) |
14 |
5 13
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( 𝑋 + 𝑠 ) ∈ dom ( 𝐹 ↾ 𝐵 ) ) |
15 |
2
|
recnd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 𝑋 ∈ ℂ ) |
17 |
3
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 𝑠 ∈ ℝ ) |
18 |
17
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 𝑠 ∈ ℂ ) |
19 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 𝐷 ∈ ℂ ) |
20 |
16 18 19 7
|
addneintrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( 𝑋 + 𝑠 ) ≠ ( 𝑋 + 𝐷 ) ) |
21 |
20
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ¬ ( 𝑋 + 𝑠 ) = ( 𝑋 + 𝐷 ) ) |
22 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 𝑋 ∈ ℝ ) |
23 |
22 17
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
24 |
|
elsng |
⊢ ( ( 𝑋 + 𝑠 ) ∈ ℝ → ( ( 𝑋 + 𝑠 ) ∈ { ( 𝑋 + 𝐷 ) } ↔ ( 𝑋 + 𝑠 ) = ( 𝑋 + 𝐷 ) ) ) |
25 |
23 24
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝑋 + 𝑠 ) ∈ { ( 𝑋 + 𝐷 ) } ↔ ( 𝑋 + 𝑠 ) = ( 𝑋 + 𝐷 ) ) ) |
26 |
21 25
|
mtbird |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ¬ ( 𝑋 + 𝑠 ) ∈ { ( 𝑋 + 𝐷 ) } ) |
27 |
14 26
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( 𝑋 + 𝑠 ) ∈ ( dom ( 𝐹 ↾ 𝐵 ) ∖ { ( 𝑋 + 𝐷 ) } ) ) |
28 |
27
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝐴 ( 𝑋 + 𝑠 ) ∈ ( dom ( 𝐹 ↾ 𝐵 ) ∖ { ( 𝑋 + 𝐷 ) } ) ) |
29 |
|
eqid |
⊢ ( 𝑠 ∈ 𝐴 ↦ ( 𝑋 + 𝑠 ) ) = ( 𝑠 ∈ 𝐴 ↦ ( 𝑋 + 𝑠 ) ) |
30 |
29
|
rnmptss |
⊢ ( ∀ 𝑠 ∈ 𝐴 ( 𝑋 + 𝑠 ) ∈ ( dom ( 𝐹 ↾ 𝐵 ) ∖ { ( 𝑋 + 𝐷 ) } ) → ran ( 𝑠 ∈ 𝐴 ↦ ( 𝑋 + 𝑠 ) ) ⊆ ( dom ( 𝐹 ↾ 𝐵 ) ∖ { ( 𝑋 + 𝐷 ) } ) ) |
31 |
28 30
|
syl |
⊢ ( 𝜑 → ran ( 𝑠 ∈ 𝐴 ↦ ( 𝑋 + 𝑠 ) ) ⊆ ( dom ( 𝐹 ↾ 𝐵 ) ∖ { ( 𝑋 + 𝐷 ) } ) ) |
32 |
|
eqid |
⊢ ( 𝑠 ∈ 𝐴 ↦ 𝑋 ) = ( 𝑠 ∈ 𝐴 ↦ 𝑋 ) |
33 |
|
eqid |
⊢ ( 𝑠 ∈ 𝐴 ↦ 𝑠 ) = ( 𝑠 ∈ 𝐴 ↦ 𝑠 ) |
34 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
35 |
3 34
|
sstrdi |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
36 |
32 35 15 9
|
constlimc |
⊢ ( 𝜑 → 𝑋 ∈ ( ( 𝑠 ∈ 𝐴 ↦ 𝑋 ) limℂ 𝐷 ) ) |
37 |
35 33 9
|
idlimc |
⊢ ( 𝜑 → 𝐷 ∈ ( ( 𝑠 ∈ 𝐴 ↦ 𝑠 ) limℂ 𝐷 ) ) |
38 |
32 33 29 16 18 36 37
|
addlimc |
⊢ ( 𝜑 → ( 𝑋 + 𝐷 ) ∈ ( ( 𝑠 ∈ 𝐴 ↦ ( 𝑋 + 𝑠 ) ) limℂ 𝐷 ) ) |
39 |
31 38 8
|
limccog |
⊢ ( 𝜑 → 𝐶 ∈ ( ( ( 𝐹 ↾ 𝐵 ) ∘ ( 𝑠 ∈ 𝐴 ↦ ( 𝑋 + 𝑠 ) ) ) limℂ 𝐷 ) ) |
40 |
|
nfv |
⊢ Ⅎ 𝑠 𝜑 |
41 |
40 29 5
|
rnmptssd |
⊢ ( 𝜑 → ran ( 𝑠 ∈ 𝐴 ↦ ( 𝑋 + 𝑠 ) ) ⊆ 𝐵 ) |
42 |
|
cores |
⊢ ( ran ( 𝑠 ∈ 𝐴 ↦ ( 𝑋 + 𝑠 ) ) ⊆ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) ∘ ( 𝑠 ∈ 𝐴 ↦ ( 𝑋 + 𝑠 ) ) ) = ( 𝐹 ∘ ( 𝑠 ∈ 𝐴 ↦ ( 𝑋 + 𝑠 ) ) ) ) |
43 |
41 42
|
syl |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐵 ) ∘ ( 𝑠 ∈ 𝐴 ↦ ( 𝑋 + 𝑠 ) ) ) = ( 𝐹 ∘ ( 𝑠 ∈ 𝐴 ↦ ( 𝑋 + 𝑠 ) ) ) ) |
44 |
23 29
|
fmptd |
⊢ ( 𝜑 → ( 𝑠 ∈ 𝐴 ↦ ( 𝑋 + 𝑠 ) ) : 𝐴 ⟶ ℝ ) |
45 |
|
fcompt |
⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ ( 𝑠 ∈ 𝐴 ↦ ( 𝑋 + 𝑠 ) ) : 𝐴 ⟶ ℝ ) → ( 𝐹 ∘ ( 𝑠 ∈ 𝐴 ↦ ( 𝑋 + 𝑠 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ ( ( 𝑠 ∈ 𝐴 ↦ ( 𝑋 + 𝑠 ) ) ‘ 𝑥 ) ) ) ) |
46 |
1 44 45
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑠 ∈ 𝐴 ↦ ( 𝑋 + 𝑠 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ ( ( 𝑠 ∈ 𝐴 ↦ ( 𝑋 + 𝑠 ) ) ‘ 𝑥 ) ) ) ) |
47 |
4
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( 𝑠 ∈ 𝐴 ↦ ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) ) |
48 |
|
oveq2 |
⊢ ( 𝑠 = 𝑥 → ( 𝑋 + 𝑠 ) = ( 𝑋 + 𝑥 ) ) |
49 |
48
|
fveq2d |
⊢ ( 𝑠 = 𝑥 → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) |
50 |
49
|
cbvmptv |
⊢ ( 𝑠 ∈ 𝐴 ↦ ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) |
51 |
50
|
a1i |
⊢ ( 𝜑 → ( 𝑠 ∈ 𝐴 ↦ ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ) |
52 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑠 ∈ 𝐴 ↦ ( 𝑋 + 𝑠 ) ) = ( 𝑠 ∈ 𝐴 ↦ ( 𝑋 + 𝑠 ) ) ) |
53 |
48
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑠 = 𝑥 ) → ( 𝑋 + 𝑠 ) = ( 𝑋 + 𝑥 ) ) |
54 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
55 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑋 ∈ ℝ ) |
56 |
3
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
57 |
55 56
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑋 + 𝑥 ) ∈ ℝ ) |
58 |
52 53 54 57
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑠 ∈ 𝐴 ↦ ( 𝑋 + 𝑠 ) ) ‘ 𝑥 ) = ( 𝑋 + 𝑥 ) ) |
59 |
58
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑋 + 𝑥 ) = ( ( 𝑠 ∈ 𝐴 ↦ ( 𝑋 + 𝑠 ) ) ‘ 𝑥 ) ) |
60 |
59
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) = ( 𝐹 ‘ ( ( 𝑠 ∈ 𝐴 ↦ ( 𝑋 + 𝑠 ) ) ‘ 𝑥 ) ) ) |
61 |
60
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ ( ( 𝑠 ∈ 𝐴 ↦ ( 𝑋 + 𝑠 ) ) ‘ 𝑥 ) ) ) ) |
62 |
47 51 61
|
3eqtrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ ( ( 𝑠 ∈ 𝐴 ↦ ( 𝑋 + 𝑠 ) ) ‘ 𝑥 ) ) ) = 𝐺 ) |
63 |
43 46 62
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐵 ) ∘ ( 𝑠 ∈ 𝐴 ↦ ( 𝑋 + 𝑠 ) ) ) = 𝐺 ) |
64 |
63
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐹 ↾ 𝐵 ) ∘ ( 𝑠 ∈ 𝐴 ↦ ( 𝑋 + 𝑠 ) ) ) limℂ 𝐷 ) = ( 𝐺 limℂ 𝐷 ) ) |
65 |
39 64
|
eleqtrd |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐺 limℂ 𝐷 ) ) |