Metamath Proof Explorer


Theorem fourierdlem55

Description: U is a real function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem55.f ( 𝜑𝐹 : ℝ ⟶ ℝ )
fourierdlem55.x ( 𝜑𝑋 ∈ ℝ )
fourierdlem55.r ( 𝜑𝑌 ∈ ℝ )
fourierdlem55.w ( 𝜑𝑊 ∈ ℝ )
fourierdlem55.h 𝐻 = ( 𝑠 ∈ ( - π [,] π ) ↦ if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) )
fourierdlem55.k 𝐾 = ( 𝑠 ∈ ( - π [,] π ) ↦ if ( 𝑠 = 0 , 1 , ( 𝑠 / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) )
fourierdlem55.u 𝑈 = ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝐻𝑠 ) · ( 𝐾𝑠 ) ) )
Assertion fourierdlem55 ( 𝜑𝑈 : ( - π [,] π ) ⟶ ℝ )

Proof

Step Hyp Ref Expression
1 fourierdlem55.f ( 𝜑𝐹 : ℝ ⟶ ℝ )
2 fourierdlem55.x ( 𝜑𝑋 ∈ ℝ )
3 fourierdlem55.r ( 𝜑𝑌 ∈ ℝ )
4 fourierdlem55.w ( 𝜑𝑊 ∈ ℝ )
5 fourierdlem55.h 𝐻 = ( 𝑠 ∈ ( - π [,] π ) ↦ if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) )
6 fourierdlem55.k 𝐾 = ( 𝑠 ∈ ( - π [,] π ) ↦ if ( 𝑠 = 0 , 1 , ( 𝑠 / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) )
7 fourierdlem55.u 𝑈 = ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝐻𝑠 ) · ( 𝐾𝑠 ) ) )
8 1 2 3 4 5 fourierdlem9 ( 𝜑𝐻 : ( - π [,] π ) ⟶ ℝ )
9 8 ffvelrnda ( ( 𝜑𝑠 ∈ ( - π [,] π ) ) → ( 𝐻𝑠 ) ∈ ℝ )
10 6 fourierdlem43 𝐾 : ( - π [,] π ) ⟶ ℝ
11 10 ffvelrni ( 𝑠 ∈ ( - π [,] π ) → ( 𝐾𝑠 ) ∈ ℝ )
12 11 adantl ( ( 𝜑𝑠 ∈ ( - π [,] π ) ) → ( 𝐾𝑠 ) ∈ ℝ )
13 9 12 remulcld ( ( 𝜑𝑠 ∈ ( - π [,] π ) ) → ( ( 𝐻𝑠 ) · ( 𝐾𝑠 ) ) ∈ ℝ )
14 13 7 fmptd ( 𝜑𝑈 : ( - π [,] π ) ⟶ ℝ )