Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem63.t |
⊢ 𝑇 = ( 𝐵 − 𝐴 ) |
2 |
|
fourierdlem63.p |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
3 |
|
fourierdlem63.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
4 |
|
fourierdlem63.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
5 |
|
fourierdlem63.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
6 |
|
fourierdlem63.d |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
7 |
|
fourierdlem63.cltd |
⊢ ( 𝜑 → 𝐶 < 𝐷 ) |
8 |
|
fourierdlem63.o |
⊢ 𝑂 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐶 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
9 |
|
fourierdlem63.h |
⊢ 𝐻 = ( { 𝐶 , 𝐷 } ∪ { 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) |
10 |
|
fourierdlem63.n |
⊢ 𝑁 = ( ( ♯ ‘ 𝐻 ) − 1 ) |
11 |
|
fourierdlem63.s |
⊢ 𝑆 = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ) |
12 |
|
fourierdlem63.e |
⊢ 𝐸 = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) |
13 |
|
fourierdlem63.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 0 ... 𝑀 ) ) |
14 |
|
fourierdlem63.j |
⊢ ( 𝜑 → 𝐽 ∈ ( 0 ..^ 𝑁 ) ) |
15 |
|
fourierdlem63.y |
⊢ ( 𝜑 → 𝑌 ∈ ( ( 𝑆 ‘ 𝐽 ) [,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
16 |
|
fourierdlem63.eyltqk |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑌 ) < ( 𝑄 ‘ 𝐾 ) ) |
17 |
|
fourierdlem63.x |
⊢ 𝑋 = ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) |
18 |
12
|
a1i |
⊢ ( 𝜑 → 𝐸 = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) ) |
19 |
|
id |
⊢ ( 𝑥 = ( 𝑆 ‘ ( 𝐽 + 1 ) ) → 𝑥 = ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
20 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑆 ‘ ( 𝐽 + 1 ) ) → ( 𝐵 − 𝑥 ) = ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
21 |
20
|
oveq1d |
⊢ ( 𝑥 = ( 𝑆 ‘ ( 𝐽 + 1 ) ) → ( ( 𝐵 − 𝑥 ) / 𝑇 ) = ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) |
22 |
21
|
fveq2d |
⊢ ( 𝑥 = ( 𝑆 ‘ ( 𝐽 + 1 ) ) → ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) = ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) ) |
23 |
22
|
oveq1d |
⊢ ( 𝑥 = ( 𝑆 ‘ ( 𝐽 + 1 ) ) → ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) = ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) |
24 |
19 23
|
oveq12d |
⊢ ( 𝑥 = ( 𝑆 ‘ ( 𝐽 + 1 ) ) → ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) ) |
25 |
24
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) → ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) ) |
26 |
1 2 3 4 5 6 7 8 9 10 11
|
fourierdlem54 |
⊢ ( 𝜑 → ( ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ) ∧ 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ) ) |
27 |
26
|
simpld |
⊢ ( 𝜑 → ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ) ) |
28 |
27
|
simprd |
⊢ ( 𝜑 → 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ) |
29 |
27
|
simpld |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
30 |
8
|
fourierdlem2 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ↔ ( 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑁 ) ) ∧ ( ( ( 𝑆 ‘ 0 ) = 𝐶 ∧ ( 𝑆 ‘ 𝑁 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
31 |
29 30
|
syl |
⊢ ( 𝜑 → ( 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ↔ ( 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑁 ) ) ∧ ( ( ( 𝑆 ‘ 0 ) = 𝐶 ∧ ( 𝑆 ‘ 𝑁 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
32 |
28 31
|
mpbid |
⊢ ( 𝜑 → ( 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑁 ) ) ∧ ( ( ( 𝑆 ‘ 0 ) = 𝐶 ∧ ( 𝑆 ‘ 𝑁 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ) |
33 |
32
|
simpld |
⊢ ( 𝜑 → 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑁 ) ) ) |
34 |
|
elmapi |
⊢ ( 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑁 ) ) → 𝑆 : ( 0 ... 𝑁 ) ⟶ ℝ ) |
35 |
33 34
|
syl |
⊢ ( 𝜑 → 𝑆 : ( 0 ... 𝑁 ) ⟶ ℝ ) |
36 |
|
fzofzp1 |
⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → ( 𝐽 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
37 |
14 36
|
syl |
⊢ ( 𝜑 → ( 𝐽 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
38 |
35 37
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ℝ ) |
39 |
2 3 4
|
fourierdlem11 |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ) |
40 |
39
|
simp2d |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
41 |
40 38
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ∈ ℝ ) |
42 |
39
|
simp1d |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
43 |
40 42
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
44 |
1 43
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
45 |
39
|
simp3d |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
46 |
42 40
|
posdifd |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵 − 𝐴 ) ) ) |
47 |
45 46
|
mpbid |
⊢ ( 𝜑 → 0 < ( 𝐵 − 𝐴 ) ) |
48 |
47 1
|
breqtrrdi |
⊢ ( 𝜑 → 0 < 𝑇 ) |
49 |
48
|
gt0ne0d |
⊢ ( 𝜑 → 𝑇 ≠ 0 ) |
50 |
41 44 49
|
redivcld |
⊢ ( 𝜑 → ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ∈ ℝ ) |
51 |
50
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) ∈ ℤ ) |
52 |
51
|
zred |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) ∈ ℝ ) |
53 |
52 44
|
remulcld |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ∈ ℝ ) |
54 |
38 53
|
readdcld |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) ∈ ℝ ) |
55 |
18 25 38 54
|
fvmptd |
⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) ) |
56 |
55 54
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ∈ ℝ ) |
57 |
2
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
58 |
3 57
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
59 |
4 58
|
mpbid |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
60 |
59
|
simpld |
⊢ ( 𝜑 → 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
61 |
|
elmapi |
⊢ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
62 |
60 61
|
syl |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
63 |
62 13
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝐾 ) ∈ ℝ ) |
64 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → 𝐶 ∈ ℝ ) |
65 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → 𝐷 ∈ ℝ ) |
66 |
42
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
67 |
|
iocssre |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐴 (,] 𝐵 ) ⊆ ℝ ) |
68 |
66 40 67
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 (,] 𝐵 ) ⊆ ℝ ) |
69 |
42 40 45 1 12
|
fourierdlem4 |
⊢ ( 𝜑 → 𝐸 : ℝ ⟶ ( 𝐴 (,] 𝐵 ) ) |
70 |
|
elfzofz |
⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → 𝐽 ∈ ( 0 ... 𝑁 ) ) |
71 |
14 70
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ ( 0 ... 𝑁 ) ) |
72 |
35 71
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐽 ) ∈ ℝ ) |
73 |
38
|
rexrd |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ℝ* ) |
74 |
|
elico2 |
⊢ ( ( ( 𝑆 ‘ 𝐽 ) ∈ ℝ ∧ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ℝ* ) → ( 𝑌 ∈ ( ( 𝑆 ‘ 𝐽 ) [,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ↔ ( 𝑌 ∈ ℝ ∧ ( 𝑆 ‘ 𝐽 ) ≤ 𝑌 ∧ 𝑌 < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) |
75 |
72 73 74
|
syl2anc |
⊢ ( 𝜑 → ( 𝑌 ∈ ( ( 𝑆 ‘ 𝐽 ) [,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ↔ ( 𝑌 ∈ ℝ ∧ ( 𝑆 ‘ 𝐽 ) ≤ 𝑌 ∧ 𝑌 < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) |
76 |
15 75
|
mpbid |
⊢ ( 𝜑 → ( 𝑌 ∈ ℝ ∧ ( 𝑆 ‘ 𝐽 ) ≤ 𝑌 ∧ 𝑌 < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
77 |
76
|
simp1d |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
78 |
69 77
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑌 ) ∈ ( 𝐴 (,] 𝐵 ) ) |
79 |
68 78
|
sseldd |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑌 ) ∈ ℝ ) |
80 |
79 77
|
resubcld |
⊢ ( 𝜑 → ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ∈ ℝ ) |
81 |
63 80
|
resubcld |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ∈ ℝ ) |
82 |
81
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ∈ ℝ ) |
83 |
|
icossicc |
⊢ ( ( 𝑆 ‘ 𝐽 ) [,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑆 ‘ 𝐽 ) [,] ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
84 |
5
|
rexrd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
85 |
6
|
rexrd |
⊢ ( 𝜑 → 𝐷 ∈ ℝ* ) |
86 |
8 29 28
|
fourierdlem15 |
⊢ ( 𝜑 → 𝑆 : ( 0 ... 𝑁 ) ⟶ ( 𝐶 [,] 𝐷 ) ) |
87 |
84 85 86 14
|
fourierdlem8 |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐽 ) [,] ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( 𝐶 [,] 𝐷 ) ) |
88 |
83 87
|
sstrid |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐽 ) [,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( 𝐶 [,] 𝐷 ) ) |
89 |
88 15
|
sseldd |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐶 [,] 𝐷 ) ) |
90 |
|
elicc2 |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( 𝑌 ∈ ( 𝐶 [,] 𝐷 ) ↔ ( 𝑌 ∈ ℝ ∧ 𝐶 ≤ 𝑌 ∧ 𝑌 ≤ 𝐷 ) ) ) |
91 |
5 6 90
|
syl2anc |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝐶 [,] 𝐷 ) ↔ ( 𝑌 ∈ ℝ ∧ 𝐶 ≤ 𝑌 ∧ 𝑌 ≤ 𝐷 ) ) ) |
92 |
89 91
|
mpbid |
⊢ ( 𝜑 → ( 𝑌 ∈ ℝ ∧ 𝐶 ≤ 𝑌 ∧ 𝑌 ≤ 𝐷 ) ) |
93 |
92
|
simp2d |
⊢ ( 𝜑 → 𝐶 ≤ 𝑌 ) |
94 |
63 79
|
resubcld |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ 𝑌 ) ) ∈ ℝ ) |
95 |
79 63
|
posdifd |
⊢ ( 𝜑 → ( ( 𝐸 ‘ 𝑌 ) < ( 𝑄 ‘ 𝐾 ) ↔ 0 < ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ 𝑌 ) ) ) ) |
96 |
16 95
|
mpbid |
⊢ ( 𝜑 → 0 < ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ 𝑌 ) ) ) |
97 |
94 96
|
elrpd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ 𝑌 ) ) ∈ ℝ+ ) |
98 |
77 97
|
ltaddrpd |
⊢ ( 𝜑 → 𝑌 < ( 𝑌 + ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ 𝑌 ) ) ) ) |
99 |
63
|
recnd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝐾 ) ∈ ℂ ) |
100 |
79
|
recnd |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑌 ) ∈ ℂ ) |
101 |
77
|
recnd |
⊢ ( 𝜑 → 𝑌 ∈ ℂ ) |
102 |
99 100 101
|
subsub3d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) = ( ( ( 𝑄 ‘ 𝐾 ) + 𝑌 ) − ( 𝐸 ‘ 𝑌 ) ) ) |
103 |
99 101
|
addcomd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐾 ) + 𝑌 ) = ( 𝑌 + ( 𝑄 ‘ 𝐾 ) ) ) |
104 |
103
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 𝐾 ) + 𝑌 ) − ( 𝐸 ‘ 𝑌 ) ) = ( ( 𝑌 + ( 𝑄 ‘ 𝐾 ) ) − ( 𝐸 ‘ 𝑌 ) ) ) |
105 |
101 99 100
|
addsubassd |
⊢ ( 𝜑 → ( ( 𝑌 + ( 𝑄 ‘ 𝐾 ) ) − ( 𝐸 ‘ 𝑌 ) ) = ( 𝑌 + ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ 𝑌 ) ) ) ) |
106 |
102 104 105
|
3eqtrrd |
⊢ ( 𝜑 → ( 𝑌 + ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ 𝑌 ) ) ) = ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ) |
107 |
98 106
|
breqtrd |
⊢ ( 𝜑 → 𝑌 < ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ) |
108 |
5 77 81 93 107
|
lelttrd |
⊢ ( 𝜑 → 𝐶 < ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ) |
109 |
5 81 108
|
ltled |
⊢ ( 𝜑 → 𝐶 ≤ ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ) |
110 |
109
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → 𝐶 ≤ ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ) |
111 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ℝ ) |
112 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝑄 ‘ 𝐾 ) ∈ ℝ ) |
113 |
56 38
|
resubcld |
⊢ ( 𝜑 → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ∈ ℝ ) |
114 |
113
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ∈ ℝ ) |
115 |
112 114
|
resubcld |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ∈ ℝ ) |
116 |
76
|
simp3d |
⊢ ( 𝜑 → 𝑌 < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
117 |
77 38 116
|
ltled |
⊢ ( 𝜑 → 𝑌 ≤ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
118 |
42 40 45 1 12 77 38 117
|
fourierdlem7 |
⊢ ( 𝜑 → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ≤ ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) |
119 |
113 80 63 118
|
lesub2dd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ≤ ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) |
120 |
119
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ≤ ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) |
121 |
99
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝑄 ‘ 𝐾 ) ∈ ℂ ) |
122 |
56
|
recnd |
⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ∈ ℂ ) |
123 |
122
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ∈ ℂ ) |
124 |
111
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ℂ ) |
125 |
121 123 124
|
subsubd |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) = ( ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) + ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
126 |
99 122
|
subcld |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ∈ ℂ ) |
127 |
38
|
recnd |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ℂ ) |
128 |
126 127
|
addcomd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) + ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) ) |
129 |
128
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) + ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) ) |
130 |
125 129
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) ) |
131 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
132 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ∈ ℝ ) |
133 |
112 132
|
sublt0d |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) < 0 ↔ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) |
134 |
131 133
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) < 0 ) |
135 |
112 132
|
resubcld |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ∈ ℝ ) |
136 |
|
ltaddneg |
⊢ ( ( ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ∈ ℝ ∧ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ℝ ) → ( ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) < 0 ↔ ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
137 |
135 111 136
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) < 0 ↔ ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
138 |
134 137
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
139 |
130 138
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
140 |
82 115 111 120 139
|
lelttrd |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
141 |
86 37
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ( 𝐶 [,] 𝐷 ) ) |
142 |
|
elicc2 |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ( 𝐶 [,] 𝐷 ) ↔ ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ℝ ∧ 𝐶 ≤ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∧ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ≤ 𝐷 ) ) ) |
143 |
5 6 142
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ( 𝐶 [,] 𝐷 ) ↔ ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ℝ ∧ 𝐶 ≤ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∧ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ≤ 𝐷 ) ) ) |
144 |
141 143
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ℝ ∧ 𝐶 ≤ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∧ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ≤ 𝐷 ) ) |
145 |
144
|
simp3d |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐽 + 1 ) ) ≤ 𝐷 ) |
146 |
145
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝑆 ‘ ( 𝐽 + 1 ) ) ≤ 𝐷 ) |
147 |
82 111 65 140 146
|
ltletrd |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) < 𝐷 ) |
148 |
82 65 147
|
ltled |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ≤ 𝐷 ) |
149 |
64 65 82 110 148
|
eliccd |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ∈ ( 𝐶 [,] 𝐷 ) ) |
150 |
|
id |
⊢ ( 𝑥 = 𝑌 → 𝑥 = 𝑌 ) |
151 |
|
oveq2 |
⊢ ( 𝑥 = 𝑌 → ( 𝐵 − 𝑥 ) = ( 𝐵 − 𝑌 ) ) |
152 |
151
|
oveq1d |
⊢ ( 𝑥 = 𝑌 → ( ( 𝐵 − 𝑥 ) / 𝑇 ) = ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) |
153 |
152
|
fveq2d |
⊢ ( 𝑥 = 𝑌 → ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) = ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) ) |
154 |
153
|
oveq1d |
⊢ ( 𝑥 = 𝑌 → ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) = ( ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) · 𝑇 ) ) |
155 |
150 154
|
oveq12d |
⊢ ( 𝑥 = 𝑌 → ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) = ( 𝑌 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) · 𝑇 ) ) ) |
156 |
155
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) = ( 𝑌 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) · 𝑇 ) ) ) |
157 |
40 77
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝑌 ) ∈ ℝ ) |
158 |
157 44 49
|
redivcld |
⊢ ( 𝜑 → ( ( 𝐵 − 𝑌 ) / 𝑇 ) ∈ ℝ ) |
159 |
158
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) ∈ ℤ ) |
160 |
159
|
zred |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) ∈ ℝ ) |
161 |
160 44
|
remulcld |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) · 𝑇 ) ∈ ℝ ) |
162 |
77 161
|
readdcld |
⊢ ( 𝜑 → ( 𝑌 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) · 𝑇 ) ) ∈ ℝ ) |
163 |
18 156 77 162
|
fvmptd |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑌 ) = ( 𝑌 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) · 𝑇 ) ) ) |
164 |
163
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) = ( ( 𝑌 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) · 𝑇 ) ) − 𝑌 ) ) |
165 |
164
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) / 𝑇 ) = ( ( ( 𝑌 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) · 𝑇 ) ) − 𝑌 ) / 𝑇 ) ) |
166 |
161
|
recnd |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) · 𝑇 ) ∈ ℂ ) |
167 |
101 166
|
pncan2d |
⊢ ( 𝜑 → ( ( 𝑌 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) · 𝑇 ) ) − 𝑌 ) = ( ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) · 𝑇 ) ) |
168 |
167
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑌 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) · 𝑇 ) ) − 𝑌 ) / 𝑇 ) = ( ( ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) · 𝑇 ) / 𝑇 ) ) |
169 |
160
|
recnd |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) ∈ ℂ ) |
170 |
44
|
recnd |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
171 |
169 170 49
|
divcan4d |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) · 𝑇 ) / 𝑇 ) = ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) ) |
172 |
165 168 171
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) / 𝑇 ) = ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) ) |
173 |
172 159
|
eqeltrd |
⊢ ( 𝜑 → ( ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) / 𝑇 ) ∈ ℤ ) |
174 |
80
|
recnd |
⊢ ( 𝜑 → ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ∈ ℂ ) |
175 |
174 170 49
|
divcan1d |
⊢ ( 𝜑 → ( ( ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) / 𝑇 ) · 𝑇 ) = ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) |
176 |
175
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( ( ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) / 𝑇 ) · 𝑇 ) ) = ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ) |
177 |
99 174
|
npcand |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) = ( 𝑄 ‘ 𝐾 ) ) |
178 |
176 177
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( ( ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) / 𝑇 ) · 𝑇 ) ) = ( 𝑄 ‘ 𝐾 ) ) |
179 |
|
ffun |
⊢ ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ → Fun 𝑄 ) |
180 |
62 179
|
syl |
⊢ ( 𝜑 → Fun 𝑄 ) |
181 |
62
|
fdmd |
⊢ ( 𝜑 → dom 𝑄 = ( 0 ... 𝑀 ) ) |
182 |
13 181
|
eleqtrrd |
⊢ ( 𝜑 → 𝐾 ∈ dom 𝑄 ) |
183 |
|
fvelrn |
⊢ ( ( Fun 𝑄 ∧ 𝐾 ∈ dom 𝑄 ) → ( 𝑄 ‘ 𝐾 ) ∈ ran 𝑄 ) |
184 |
180 182 183
|
syl2anc |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝐾 ) ∈ ran 𝑄 ) |
185 |
178 184
|
eqeltrd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( ( ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) / 𝑇 ) · 𝑇 ) ) ∈ ran 𝑄 ) |
186 |
|
oveq1 |
⊢ ( 𝑘 = ( ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) / 𝑇 ) → ( 𝑘 · 𝑇 ) = ( ( ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) / 𝑇 ) · 𝑇 ) ) |
187 |
186
|
oveq2d |
⊢ ( 𝑘 = ( ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) / 𝑇 ) → ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( 𝑘 · 𝑇 ) ) = ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( ( ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) / 𝑇 ) · 𝑇 ) ) ) |
188 |
187
|
eleq1d |
⊢ ( 𝑘 = ( ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) / 𝑇 ) → ( ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( ( ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) / 𝑇 ) · 𝑇 ) ) ∈ ran 𝑄 ) ) |
189 |
188
|
rspcev |
⊢ ( ( ( ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) / 𝑇 ) ∈ ℤ ∧ ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( ( ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) / 𝑇 ) · 𝑇 ) ) ∈ ran 𝑄 ) → ∃ 𝑘 ∈ ℤ ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) |
190 |
173 185 189
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑘 ∈ ℤ ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) |
191 |
190
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ∃ 𝑘 ∈ ℤ ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) |
192 |
|
oveq1 |
⊢ ( 𝑥 = ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) → ( 𝑥 + ( 𝑘 · 𝑇 ) ) = ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( 𝑘 · 𝑇 ) ) ) |
193 |
192
|
eleq1d |
⊢ ( 𝑥 = ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) → ( ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
194 |
193
|
rexbidv |
⊢ ( 𝑥 = ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) → ( ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑘 ∈ ℤ ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
195 |
194
|
elrab |
⊢ ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ∈ { 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ↔ ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ∈ ( 𝐶 [,] 𝐷 ) ∧ ∃ 𝑘 ∈ ℤ ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
196 |
149 191 195
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ∈ { 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) |
197 |
|
elun2 |
⊢ ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ∈ { 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } → ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ∈ ( { 𝐶 , 𝐷 } ∪ { 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) |
198 |
196 197
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ∈ ( { 𝐶 , 𝐷 } ∪ { 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) |
199 |
198 17 9
|
3eltr4g |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → 𝑋 ∈ 𝐻 ) |
200 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 ∈ ℤ ) |
201 |
200
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → 𝑗 ∈ ℤ ) |
202 |
|
elfzoelz |
⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → 𝐽 ∈ ℤ ) |
203 |
14 202
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ ℤ ) |
204 |
203
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → 𝐽 ∈ ℤ ) |
205 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ) → ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ) |
206 |
26
|
simprd |
⊢ ( 𝜑 → 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ) |
207 |
206
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ) → 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ) |
208 |
71
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ) → 𝐽 ∈ ( 0 ... 𝑁 ) ) |
209 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ) → 𝑗 ∈ ( 0 ... 𝑁 ) ) |
210 |
|
isorel |
⊢ ( ( 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ∧ ( 𝐽 ∈ ( 0 ... 𝑁 ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ) → ( 𝐽 < 𝑗 ↔ ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ) ) |
211 |
207 208 209 210
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ) → ( 𝐽 < 𝑗 ↔ ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ) ) |
212 |
205 211
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ) → 𝐽 < 𝑗 ) |
213 |
212
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → 𝐽 < 𝑗 ) |
214 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) → ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
215 |
206
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) → 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ) |
216 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) → 𝑗 ∈ ( 0 ... 𝑁 ) ) |
217 |
37
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) → ( 𝐽 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
218 |
|
isorel |
⊢ ( ( 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ∧ ( 𝑗 ∈ ( 0 ... 𝑁 ) ∧ ( 𝐽 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑗 < ( 𝐽 + 1 ) ↔ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
219 |
215 216 217 218
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) → ( 𝑗 < ( 𝐽 + 1 ) ↔ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
220 |
214 219
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) → 𝑗 < ( 𝐽 + 1 ) ) |
221 |
220
|
adantrl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → 𝑗 < ( 𝐽 + 1 ) ) |
222 |
|
btwnnz |
⊢ ( ( 𝐽 ∈ ℤ ∧ 𝐽 < 𝑗 ∧ 𝑗 < ( 𝐽 + 1 ) ) → ¬ 𝑗 ∈ ℤ ) |
223 |
204 213 221 222
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ¬ 𝑗 ∈ ℤ ) |
224 |
201 223
|
pm2.65da |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ¬ ( ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
225 |
224
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ¬ ( ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
226 |
72
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) → ( 𝑆 ‘ 𝐽 ) ∈ ℝ ) |
227 |
77
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) → 𝑌 ∈ ℝ ) |
228 |
35
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝑆 ‘ 𝑗 ) ∈ ℝ ) |
229 |
228
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) → ( 𝑆 ‘ 𝑗 ) ∈ ℝ ) |
230 |
76
|
simp2d |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐽 ) ≤ 𝑌 ) |
231 |
230
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) → ( 𝑆 ‘ 𝐽 ) ≤ 𝑌 ) |
232 |
107 17
|
breqtrrdi |
⊢ ( 𝜑 → 𝑌 < 𝑋 ) |
233 |
232
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) → 𝑌 < 𝑋 ) |
234 |
|
eqcom |
⊢ ( 𝑋 = ( 𝑆 ‘ 𝑗 ) ↔ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) |
235 |
234
|
biimpri |
⊢ ( ( 𝑆 ‘ 𝑗 ) = 𝑋 → 𝑋 = ( 𝑆 ‘ 𝑗 ) ) |
236 |
235
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) → 𝑋 = ( 𝑆 ‘ 𝑗 ) ) |
237 |
233 236
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) → 𝑌 < ( 𝑆 ‘ 𝑗 ) ) |
238 |
237
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) → 𝑌 < ( 𝑆 ‘ 𝑗 ) ) |
239 |
226 227 229 231 238
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) → ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ) |
240 |
239
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) → ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ) |
241 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ∧ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) → ( 𝑆 ‘ 𝑗 ) = 𝑋 ) |
242 |
17 140
|
eqbrtrid |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → 𝑋 < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
243 |
242
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ∧ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) → 𝑋 < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
244 |
241 243
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ∧ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) → ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
245 |
244
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) → ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
246 |
240 245
|
jca |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) → ( ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
247 |
225 246
|
mtand |
⊢ ( ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ¬ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) |
248 |
247
|
nrexdv |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ¬ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( 𝑆 ‘ 𝑗 ) = 𝑋 ) |
249 |
|
isof1o |
⊢ ( 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) → 𝑆 : ( 0 ... 𝑁 ) –1-1-onto→ 𝐻 ) |
250 |
206 249
|
syl |
⊢ ( 𝜑 → 𝑆 : ( 0 ... 𝑁 ) –1-1-onto→ 𝐻 ) |
251 |
|
f1ofo |
⊢ ( 𝑆 : ( 0 ... 𝑁 ) –1-1-onto→ 𝐻 → 𝑆 : ( 0 ... 𝑁 ) –onto→ 𝐻 ) |
252 |
250 251
|
syl |
⊢ ( 𝜑 → 𝑆 : ( 0 ... 𝑁 ) –onto→ 𝐻 ) |
253 |
|
foelrn |
⊢ ( ( 𝑆 : ( 0 ... 𝑁 ) –onto→ 𝐻 ∧ 𝑋 ∈ 𝐻 ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑋 = ( 𝑆 ‘ 𝑗 ) ) |
254 |
252 253
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐻 ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑋 = ( 𝑆 ‘ 𝑗 ) ) |
255 |
234
|
rexbii |
⊢ ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑋 = ( 𝑆 ‘ 𝑗 ) ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( 𝑆 ‘ 𝑗 ) = 𝑋 ) |
256 |
254 255
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐻 ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( 𝑆 ‘ 𝑗 ) = 𝑋 ) |
257 |
256
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ∧ 𝑋 ∈ 𝐻 ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( 𝑆 ‘ 𝑗 ) = 𝑋 ) |
258 |
248 257
|
mtand |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ¬ 𝑋 ∈ 𝐻 ) |
259 |
199 258
|
pm2.65da |
⊢ ( 𝜑 → ¬ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
260 |
56 63 259
|
nltled |
⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ≤ ( 𝑄 ‘ 𝐾 ) ) |