| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem65.p |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 2 |
|
fourierdlem65.t |
⊢ 𝑇 = ( 𝐵 − 𝐴 ) |
| 3 |
|
fourierdlem65.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 4 |
|
fourierdlem65.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
| 5 |
|
fourierdlem65.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 6 |
|
fourierdlem65.d |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝐶 (,) +∞ ) ) |
| 7 |
|
fourierdlem65.o |
⊢ 𝑂 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐶 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 8 |
|
fourierdlem65.n |
⊢ 𝑁 = ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) − 1 ) |
| 9 |
|
fourierdlem65.s |
⊢ 𝑆 = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) ) |
| 10 |
|
fourierdlem65.e |
⊢ 𝐸 = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 11 |
|
fourierdlem65.l |
⊢ 𝐿 = ( 𝑦 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) ) |
| 12 |
|
fourierdlem65.z |
⊢ 𝑍 = ( ( 𝑆 ‘ 𝑗 ) + ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) |
| 13 |
11
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → 𝐿 = ( 𝑦 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) ) ) |
| 14 |
|
simpr |
⊢ ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ∧ 𝑦 = ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) → 𝑦 = ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) |
| 15 |
|
simpl |
⊢ ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ∧ 𝑦 = ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) |
| 16 |
14 15
|
eqtrd |
⊢ ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ∧ 𝑦 = ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) → 𝑦 = 𝐵 ) |
| 17 |
16
|
iftrued |
⊢ ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ∧ 𝑦 = ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) → if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) = 𝐴 ) |
| 18 |
17
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ 𝑦 = ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) → if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) = 𝐴 ) |
| 19 |
1 3 4
|
fourierdlem11 |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ) |
| 20 |
19
|
simp1d |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 21 |
19
|
simp2d |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 22 |
19
|
simp3d |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
| 23 |
20 21 22 2 10
|
fourierdlem4 |
⊢ ( 𝜑 → 𝐸 : ℝ ⟶ ( 𝐴 (,] 𝐵 ) ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐸 : ℝ ⟶ ( 𝐴 (,] 𝐵 ) ) |
| 25 |
|
ioossre |
⊢ ( 𝐶 (,) +∞ ) ⊆ ℝ |
| 26 |
25 6
|
sselid |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 27 |
5
|
rexrd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
| 28 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 29 |
28
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
| 30 |
|
ioogtlb |
⊢ ( ( 𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐷 ∈ ( 𝐶 (,) +∞ ) ) → 𝐶 < 𝐷 ) |
| 31 |
27 29 6 30
|
syl3anc |
⊢ ( 𝜑 → 𝐶 < 𝐷 ) |
| 32 |
|
id |
⊢ ( 𝑦 = 𝑥 → 𝑦 = 𝑥 ) |
| 33 |
2
|
eqcomi |
⊢ ( 𝐵 − 𝐴 ) = 𝑇 |
| 34 |
33
|
oveq2i |
⊢ ( 𝑘 · ( 𝐵 − 𝐴 ) ) = ( 𝑘 · 𝑇 ) |
| 35 |
34
|
a1i |
⊢ ( 𝑦 = 𝑥 → ( 𝑘 · ( 𝐵 − 𝐴 ) ) = ( 𝑘 · 𝑇 ) ) |
| 36 |
32 35
|
oveq12d |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) = ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) |
| 37 |
36
|
eleq1d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ↔ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
| 38 |
37
|
rexbidv |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ↔ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
| 39 |
38
|
cbvrabv |
⊢ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } = { 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } |
| 40 |
39
|
uneq2i |
⊢ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) = ( { 𝐶 , 𝐷 } ∪ { 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) |
| 41 |
2 1 3 4 5 26 31 7 40 8 9
|
fourierdlem54 |
⊢ ( 𝜑 → ( ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ) ∧ 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) ) ) |
| 42 |
41
|
simpld |
⊢ ( 𝜑 → ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ) ) |
| 43 |
42
|
simprd |
⊢ ( 𝜑 → 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ) |
| 44 |
42
|
simpld |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 45 |
7
|
fourierdlem2 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ↔ ( 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑁 ) ) ∧ ( ( ( 𝑆 ‘ 0 ) = 𝐶 ∧ ( 𝑆 ‘ 𝑁 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 46 |
44 45
|
syl |
⊢ ( 𝜑 → ( 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ↔ ( 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑁 ) ) ∧ ( ( ( 𝑆 ‘ 0 ) = 𝐶 ∧ ( 𝑆 ‘ 𝑁 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 47 |
43 46
|
mpbid |
⊢ ( 𝜑 → ( 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑁 ) ) ∧ ( ( ( 𝑆 ‘ 0 ) = 𝐶 ∧ ( 𝑆 ‘ 𝑁 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 48 |
47
|
simpld |
⊢ ( 𝜑 → 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑁 ) ) ) |
| 49 |
|
elmapi |
⊢ ( 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑁 ) ) → 𝑆 : ( 0 ... 𝑁 ) ⟶ ℝ ) |
| 50 |
48 49
|
syl |
⊢ ( 𝜑 → 𝑆 : ( 0 ... 𝑁 ) ⟶ ℝ ) |
| 51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑆 : ( 0 ... 𝑁 ) ⟶ ℝ ) |
| 52 |
|
elfzofz |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑁 ) → 𝑗 ∈ ( 0 ... 𝑁 ) ) |
| 53 |
52
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑗 ∈ ( 0 ... 𝑁 ) ) |
| 54 |
51 53
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ 𝑗 ) ∈ ℝ ) |
| 55 |
24 54
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ∈ ( 𝐴 (,] 𝐵 ) ) |
| 56 |
55
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ∈ ( 𝐴 (,] 𝐵 ) ) |
| 57 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → 𝐴 ∈ ℝ ) |
| 58 |
13 18 56 57
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) = 𝐴 ) |
| 59 |
58
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) − ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) = ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) − 𝐴 ) ) |
| 60 |
21
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → 𝐵 ∈ ℝ ) |
| 61 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → 𝐴 < 𝐵 ) |
| 62 |
54
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝑆 ‘ 𝑗 ) ∈ ℝ ) |
| 63 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) |
| 64 |
|
fzofzp1 |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑁 ) → ( 𝑗 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 65 |
64
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑗 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 66 |
51 65
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 67 |
66
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 68 |
|
elfzoelz |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑁 ) → 𝑗 ∈ ℤ ) |
| 69 |
68
|
zred |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑁 ) → 𝑗 ∈ ℝ ) |
| 70 |
69
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑗 ∈ ℝ ) |
| 71 |
70
|
ltp1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑗 < ( 𝑗 + 1 ) ) |
| 72 |
41
|
simprd |
⊢ ( 𝜑 → 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) ) |
| 73 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) ) |
| 74 |
|
isorel |
⊢ ( ( 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) ∧ ( 𝑗 ∈ ( 0 ... 𝑁 ) ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑗 < ( 𝑗 + 1 ) ↔ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 75 |
73 53 65 74
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑗 < ( 𝑗 + 1 ) ↔ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 76 |
71 75
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) |
| 77 |
76
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) |
| 78 |
|
isof1o |
⊢ ( 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) → 𝑆 : ( 0 ... 𝑁 ) –1-1-onto→ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) |
| 79 |
|
f1ofo |
⊢ ( 𝑆 : ( 0 ... 𝑁 ) –1-1-onto→ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) → 𝑆 : ( 0 ... 𝑁 ) –onto→ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) |
| 80 |
72 78 79
|
3syl |
⊢ ( 𝜑 → 𝑆 : ( 0 ... 𝑁 ) –onto→ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) |
| 81 |
80
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) → 𝑆 : ( 0 ... 𝑁 ) –onto→ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) |
| 82 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) → 𝐶 ∈ ℝ ) |
| 83 |
26
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) → 𝐷 ∈ ℝ ) |
| 84 |
21 20
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 85 |
2 84
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
| 86 |
85
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑇 ∈ ℝ ) |
| 87 |
54 86
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ∈ ℝ ) |
| 88 |
87
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) → ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ∈ ℝ ) |
| 89 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐶 ∈ ℝ ) |
| 90 |
7 44 43
|
fourierdlem15 |
⊢ ( 𝜑 → 𝑆 : ( 0 ... 𝑁 ) ⟶ ( 𝐶 [,] 𝐷 ) ) |
| 91 |
90
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑆 : ( 0 ... 𝑁 ) ⟶ ( 𝐶 [,] 𝐷 ) ) |
| 92 |
91 53
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ 𝑗 ) ∈ ( 𝐶 [,] 𝐷 ) ) |
| 93 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐷 ∈ ℝ ) |
| 94 |
|
elicc2 |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( ( 𝑆 ‘ 𝑗 ) ∈ ( 𝐶 [,] 𝐷 ) ↔ ( ( 𝑆 ‘ 𝑗 ) ∈ ℝ ∧ 𝐶 ≤ ( 𝑆 ‘ 𝑗 ) ∧ ( 𝑆 ‘ 𝑗 ) ≤ 𝐷 ) ) ) |
| 95 |
89 93 94
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) ∈ ( 𝐶 [,] 𝐷 ) ↔ ( ( 𝑆 ‘ 𝑗 ) ∈ ℝ ∧ 𝐶 ≤ ( 𝑆 ‘ 𝑗 ) ∧ ( 𝑆 ‘ 𝑗 ) ≤ 𝐷 ) ) ) |
| 96 |
92 95
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) ∈ ℝ ∧ 𝐶 ≤ ( 𝑆 ‘ 𝑗 ) ∧ ( 𝑆 ‘ 𝑗 ) ≤ 𝐷 ) ) |
| 97 |
96
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐶 ≤ ( 𝑆 ‘ 𝑗 ) ) |
| 98 |
20 21
|
posdifd |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵 − 𝐴 ) ) ) |
| 99 |
22 98
|
mpbid |
⊢ ( 𝜑 → 0 < ( 𝐵 − 𝐴 ) ) |
| 100 |
99 2
|
breqtrrdi |
⊢ ( 𝜑 → 0 < 𝑇 ) |
| 101 |
85 100
|
elrpd |
⊢ ( 𝜑 → 𝑇 ∈ ℝ+ ) |
| 102 |
101
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑇 ∈ ℝ+ ) |
| 103 |
54 102
|
ltaddrpd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ 𝑗 ) < ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) |
| 104 |
89 54 87 97 103
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐶 < ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) |
| 105 |
89 87 104
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐶 ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) |
| 106 |
105
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) → 𝐶 ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) |
| 107 |
66
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) → ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 108 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) → ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) |
| 109 |
88 107
|
ltnled |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) → ( ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ↔ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) ) |
| 110 |
108 109
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) → ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) |
| 111 |
91 65
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∈ ( 𝐶 [,] 𝐷 ) ) |
| 112 |
|
elicc2 |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∈ ( 𝐶 [,] 𝐷 ) ↔ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ∧ 𝐶 ≤ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∧ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ 𝐷 ) ) ) |
| 113 |
89 93 112
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∈ ( 𝐶 [,] 𝐷 ) ↔ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ∧ 𝐶 ≤ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∧ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ 𝐷 ) ) ) |
| 114 |
111 113
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ∧ 𝐶 ≤ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∧ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ 𝐷 ) ) |
| 115 |
114
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ 𝐷 ) |
| 116 |
115
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) → ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ 𝐷 ) |
| 117 |
88 107 83 110 116
|
ltletrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) → ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) < 𝐷 ) |
| 118 |
88 83 117
|
ltled |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) → ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ≤ 𝐷 ) |
| 119 |
82 83 88 106 118
|
eliccd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) → ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ∈ ( 𝐶 [,] 𝐷 ) ) |
| 120 |
119
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) → ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ∈ ( 𝐶 [,] 𝐷 ) ) |
| 121 |
10
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐸 = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) ) |
| 122 |
|
id |
⊢ ( 𝑥 = ( 𝑆 ‘ 𝑗 ) → 𝑥 = ( 𝑆 ‘ 𝑗 ) ) |
| 123 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑆 ‘ 𝑗 ) → ( 𝐵 − 𝑥 ) = ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) ) |
| 124 |
123
|
oveq1d |
⊢ ( 𝑥 = ( 𝑆 ‘ 𝑗 ) → ( ( 𝐵 − 𝑥 ) / 𝑇 ) = ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) |
| 125 |
124
|
fveq2d |
⊢ ( 𝑥 = ( 𝑆 ‘ 𝑗 ) → ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) = ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) ) |
| 126 |
125
|
oveq1d |
⊢ ( 𝑥 = ( 𝑆 ‘ 𝑗 ) → ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) = ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) ) |
| 127 |
122 126
|
oveq12d |
⊢ ( 𝑥 = ( 𝑆 ‘ 𝑗 ) → ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) = ( ( 𝑆 ‘ 𝑗 ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 128 |
127
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑥 = ( 𝑆 ‘ 𝑗 ) ) → ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) = ( ( 𝑆 ‘ 𝑗 ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 129 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐵 ∈ ℝ ) |
| 130 |
129 54
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) ∈ ℝ ) |
| 131 |
130 102
|
rerpdivcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ∈ ℝ ) |
| 132 |
131
|
flcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) ∈ ℤ ) |
| 133 |
132
|
zred |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) ∈ ℝ ) |
| 134 |
133 86
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) ∈ ℝ ) |
| 135 |
54 134
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) ) ∈ ℝ ) |
| 136 |
121 128 54 135
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( ( 𝑆 ‘ 𝑗 ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 137 |
136
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) = ( ( ( 𝑆 ‘ 𝑗 ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) ) − ( 𝑆 ‘ 𝑗 ) ) ) |
| 138 |
137
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) = ( ( ( ( 𝑆 ‘ 𝑗 ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) |
| 139 |
54
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ 𝑗 ) ∈ ℂ ) |
| 140 |
134
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) ∈ ℂ ) |
| 141 |
139 140
|
pncan2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝑆 ‘ 𝑗 ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) ) − ( 𝑆 ‘ 𝑗 ) ) = ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) ) |
| 142 |
141
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( ( 𝑆 ‘ 𝑗 ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) = ( ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) / 𝑇 ) ) |
| 143 |
133
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) ∈ ℂ ) |
| 144 |
86
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑇 ∈ ℂ ) |
| 145 |
102
|
rpne0d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑇 ≠ 0 ) |
| 146 |
143 144 145
|
divcan4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) / 𝑇 ) = ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) ) |
| 147 |
138 142 146
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) = ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) ) |
| 148 |
147 132
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ∈ ℤ ) |
| 149 |
|
peano2zm |
⊢ ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ∈ ℤ → ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − 1 ) ∈ ℤ ) |
| 150 |
148 149
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − 1 ) ∈ ℤ ) |
| 151 |
150
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) → ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − 1 ) ∈ ℤ ) |
| 152 |
33
|
oveq2i |
⊢ ( ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − 1 ) · ( 𝐵 − 𝐴 ) ) = ( ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − 1 ) · 𝑇 ) |
| 153 |
152
|
oveq2i |
⊢ ( ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) + ( ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − 1 ) · ( 𝐵 − 𝐴 ) ) ) = ( ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) + ( ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − 1 ) · 𝑇 ) ) |
| 154 |
153
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) + ( ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − 1 ) · ( 𝐵 − 𝐴 ) ) ) = ( ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) + ( ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − 1 ) · 𝑇 ) ) ) |
| 155 |
136
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( ( 𝑆 ‘ 𝑗 ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 156 |
|
oveq1 |
⊢ ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 → ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) = ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) ) |
| 157 |
156
|
eqcomd |
⊢ ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 → ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) = ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) ) |
| 158 |
157
|
oveq1d |
⊢ ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 → ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) = ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) |
| 159 |
158
|
fveq2d |
⊢ ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 → ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) = ( ⌊ ‘ ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) ) |
| 160 |
159
|
oveq1d |
⊢ ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 → ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) = ( ( ⌊ ‘ ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) ) |
| 161 |
160
|
oveq2d |
⊢ ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 → ( ( 𝑆 ‘ 𝑗 ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) ) = ( ( 𝑆 ‘ 𝑗 ) + ( ( ⌊ ‘ ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 162 |
161
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( ( 𝑆 ‘ 𝑗 ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) ) = ( ( 𝑆 ‘ 𝑗 ) + ( ( ⌊ ‘ ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 163 |
147 143
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ∈ ℂ ) |
| 164 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 1 ∈ ℂ ) |
| 165 |
163 164 144
|
subdird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − 1 ) · 𝑇 ) = ( ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) · 𝑇 ) − ( 1 · 𝑇 ) ) ) |
| 166 |
85
|
recnd |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
| 167 |
166
|
mullidd |
⊢ ( 𝜑 → ( 1 · 𝑇 ) = 𝑇 ) |
| 168 |
167
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) · 𝑇 ) − ( 1 · 𝑇 ) ) = ( ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) · 𝑇 ) − 𝑇 ) ) |
| 169 |
168
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) · 𝑇 ) − ( 1 · 𝑇 ) ) = ( ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) · 𝑇 ) − 𝑇 ) ) |
| 170 |
165 169
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − 1 ) · 𝑇 ) = ( ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) · 𝑇 ) − 𝑇 ) ) |
| 171 |
170
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) + ( ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − 1 ) · 𝑇 ) ) = ( ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) + ( ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) · 𝑇 ) − 𝑇 ) ) ) |
| 172 |
163 144
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) · 𝑇 ) ∈ ℂ ) |
| 173 |
139 144 172
|
ppncand |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) + ( ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) · 𝑇 ) − 𝑇 ) ) = ( ( 𝑆 ‘ 𝑗 ) + ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) · 𝑇 ) ) ) |
| 174 |
|
flid |
⊢ ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ∈ ℤ → ( ⌊ ‘ ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) = ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) |
| 175 |
148 174
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ⌊ ‘ ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) = ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) |
| 176 |
175
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) = ( ⌊ ‘ ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) ) |
| 177 |
176
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) · 𝑇 ) = ( ( ⌊ ‘ ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) ) |
| 178 |
177
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) + ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) · 𝑇 ) ) = ( ( 𝑆 ‘ 𝑗 ) + ( ( ⌊ ‘ ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 179 |
171 173 178
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) + ( ( ⌊ ‘ ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) ) = ( ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) + ( ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − 1 ) · 𝑇 ) ) ) |
| 180 |
179
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( ( 𝑆 ‘ 𝑗 ) + ( ( ⌊ ‘ ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) ) = ( ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) + ( ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − 1 ) · 𝑇 ) ) ) |
| 181 |
155 162 180
|
3eqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) + ( ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − 1 ) · 𝑇 ) ) = ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) |
| 182 |
154 181 63
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) + ( ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − 1 ) · ( 𝐵 − 𝐴 ) ) ) = 𝐵 ) |
| 183 |
1
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 184 |
3 183
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 185 |
4 184
|
mpbid |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 186 |
185
|
simprd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 187 |
186
|
simpld |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ) |
| 188 |
187
|
simprd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) = 𝐵 ) |
| 189 |
188
|
eqcomd |
⊢ ( 𝜑 → 𝐵 = ( 𝑄 ‘ 𝑀 ) ) |
| 190 |
1 3 4
|
fourierdlem15 |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
| 191 |
|
ffn |
⊢ ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) → 𝑄 Fn ( 0 ... 𝑀 ) ) |
| 192 |
190 191
|
syl |
⊢ ( 𝜑 → 𝑄 Fn ( 0 ... 𝑀 ) ) |
| 193 |
3
|
nnnn0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 194 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 195 |
193 194
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
| 196 |
|
eluzfz2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
| 197 |
195 196
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
| 198 |
|
fnfvelrn |
⊢ ( ( 𝑄 Fn ( 0 ... 𝑀 ) ∧ 𝑀 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑀 ) ∈ ran 𝑄 ) |
| 199 |
192 197 198
|
syl2anc |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) ∈ ran 𝑄 ) |
| 200 |
189 199
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ ran 𝑄 ) |
| 201 |
200
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → 𝐵 ∈ ran 𝑄 ) |
| 202 |
182 201
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) + ( ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − 1 ) · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ) |
| 203 |
202
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) → ( ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) + ( ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − 1 ) · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ) |
| 204 |
|
oveq1 |
⊢ ( 𝑘 = ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − 1 ) → ( 𝑘 · ( 𝐵 − 𝐴 ) ) = ( ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − 1 ) · ( 𝐵 − 𝐴 ) ) ) |
| 205 |
204
|
oveq2d |
⊢ ( 𝑘 = ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − 1 ) → ( ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) = ( ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) + ( ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − 1 ) · ( 𝐵 − 𝐴 ) ) ) ) |
| 206 |
205
|
eleq1d |
⊢ ( 𝑘 = ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − 1 ) → ( ( ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ↔ ( ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) + ( ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − 1 ) · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ) ) |
| 207 |
206
|
rspcev |
⊢ ( ( ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − 1 ) ∈ ℤ ∧ ( ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) + ( ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − 1 ) · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ) → ∃ 𝑘 ∈ ℤ ( ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ) |
| 208 |
151 203 207
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) → ∃ 𝑘 ∈ ℤ ( ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ) |
| 209 |
|
oveq1 |
⊢ ( 𝑦 = ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) → ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) = ( ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ) |
| 210 |
209
|
eleq1d |
⊢ ( 𝑦 = ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) → ( ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ↔ ( ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ) ) |
| 211 |
210
|
rexbidv |
⊢ ( 𝑦 = ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) → ( ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ↔ ∃ 𝑘 ∈ ℤ ( ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ) ) |
| 212 |
211
|
elrab |
⊢ ( ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ∈ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ↔ ( ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ∈ ( 𝐶 [,] 𝐷 ) ∧ ∃ 𝑘 ∈ ℤ ( ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ) ) |
| 213 |
120 208 212
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) → ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ∈ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) |
| 214 |
|
elun2 |
⊢ ( ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ∈ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } → ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ∈ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) |
| 215 |
213 214
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) → ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ∈ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) |
| 216 |
|
foelrn |
⊢ ( ( 𝑆 : ( 0 ... 𝑁 ) –onto→ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ∧ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ∈ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) → ∃ 𝑖 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) = ( 𝑆 ‘ 𝑖 ) ) |
| 217 |
81 215 216
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) → ∃ 𝑖 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) = ( 𝑆 ‘ 𝑖 ) ) |
| 218 |
|
eqcom |
⊢ ( ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) = ( 𝑆 ‘ 𝑖 ) ↔ ( 𝑆 ‘ 𝑖 ) = ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) |
| 219 |
218
|
rexbii |
⊢ ( ∃ 𝑖 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) = ( 𝑆 ‘ 𝑖 ) ↔ ∃ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝑆 ‘ 𝑖 ) = ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) |
| 220 |
217 219
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) → ∃ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝑆 ‘ 𝑖 ) = ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) |
| 221 |
103
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) ∧ ( 𝑆 ‘ 𝑖 ) = ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) → ( 𝑆 ‘ 𝑗 ) < ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) |
| 222 |
218
|
biimpri |
⊢ ( ( 𝑆 ‘ 𝑖 ) = ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) → ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) = ( 𝑆 ‘ 𝑖 ) ) |
| 223 |
222
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) ∧ ( 𝑆 ‘ 𝑖 ) = ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) → ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) = ( 𝑆 ‘ 𝑖 ) ) |
| 224 |
221 223
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) ∧ ( 𝑆 ‘ 𝑖 ) = ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) → ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ 𝑖 ) ) |
| 225 |
110
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) ∧ ( 𝑆 ‘ 𝑖 ) = ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) → ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) |
| 226 |
223 225
|
eqbrtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) ∧ ( 𝑆 ‘ 𝑖 ) = ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) → ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) |
| 227 |
224 226
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) ∧ ( 𝑆 ‘ 𝑖 ) = ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) → ( ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ 𝑖 ) ∧ ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 228 |
227
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑖 ) = ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) → ( ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ 𝑖 ) ∧ ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 229 |
|
simplll |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑖 ) = ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) → ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ) |
| 230 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑖 ) = ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) → 𝑖 ∈ ( 0 ... 𝑁 ) ) |
| 231 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 0 ... 𝑁 ) → 𝑖 ∈ ℤ ) |
| 232 |
231
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ 𝑖 ) ∧ ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → 𝑖 ∈ ℤ ) |
| 233 |
68
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ 𝑖 ) ∧ ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → 𝑗 ∈ ℤ ) |
| 234 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ 𝑖 ) ) → ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ 𝑖 ) ) |
| 235 |
73
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ 𝑖 ) ) → 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) ) |
| 236 |
53
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ 𝑖 ) ) → 𝑗 ∈ ( 0 ... 𝑁 ) ) |
| 237 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ 𝑖 ) ) → 𝑖 ∈ ( 0 ... 𝑁 ) ) |
| 238 |
|
isorel |
⊢ ( ( 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) ∧ ( 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑗 < 𝑖 ↔ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ 𝑖 ) ) ) |
| 239 |
235 236 237 238
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ 𝑖 ) ) → ( 𝑗 < 𝑖 ↔ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ 𝑖 ) ) ) |
| 240 |
234 239
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ 𝑖 ) ) → 𝑗 < 𝑖 ) |
| 241 |
240
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ 𝑖 ) ∧ ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → 𝑗 < 𝑖 ) |
| 242 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) → ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) |
| 243 |
73
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) → 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) ) |
| 244 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) → 𝑖 ∈ ( 0 ... 𝑁 ) ) |
| 245 |
65
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) → ( 𝑗 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 246 |
|
isorel |
⊢ ( ( 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) ∧ ( 𝑖 ∈ ( 0 ... 𝑁 ) ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑖 < ( 𝑗 + 1 ) ↔ ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 247 |
243 244 245 246
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) → ( 𝑖 < ( 𝑗 + 1 ) ↔ ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 248 |
242 247
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) → 𝑖 < ( 𝑗 + 1 ) ) |
| 249 |
248
|
adantrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ 𝑖 ) ∧ ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → 𝑖 < ( 𝑗 + 1 ) ) |
| 250 |
|
btwnnz |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑗 < 𝑖 ∧ 𝑖 < ( 𝑗 + 1 ) ) → ¬ 𝑖 ∈ ℤ ) |
| 251 |
233 241 249 250
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ 𝑖 ) ∧ ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → ¬ 𝑖 ∈ ℤ ) |
| 252 |
232 251
|
pm2.65da |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) → ¬ ( ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ 𝑖 ) ∧ ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 253 |
229 230 252
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑖 ) = ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) → ¬ ( ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ 𝑖 ) ∧ ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 254 |
228 253
|
pm2.65da |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) → ¬ ( 𝑆 ‘ 𝑖 ) = ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) |
| 255 |
254
|
nrexdv |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) → ¬ ∃ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝑆 ‘ 𝑖 ) = ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) |
| 256 |
255
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ¬ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) → ¬ ∃ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝑆 ‘ 𝑖 ) = ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) |
| 257 |
220 256
|
condan |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) |
| 258 |
62
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝑆 ‘ 𝑗 ) ∈ ℝ* ) |
| 259 |
85
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → 𝑇 ∈ ℝ ) |
| 260 |
62 259
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ∈ ℝ ) |
| 261 |
|
elioc2 |
⊢ ( ( ( 𝑆 ‘ 𝑗 ) ∈ ℝ* ∧ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ∈ ℝ ) → ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∈ ( ( 𝑆 ‘ 𝑗 ) (,] ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) ↔ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∧ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) ) ) |
| 262 |
258 260 261
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∈ ( ( 𝑆 ‘ 𝑗 ) (,] ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) ↔ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∧ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) ) ) |
| 263 |
67 77 257 262
|
mpbir3and |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∈ ( ( 𝑆 ‘ 𝑗 ) (,] ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) ) |
| 264 |
57 60 61 2 10 62 63 263
|
fourierdlem26 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) = ( 𝐴 + ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) ) ) |
| 265 |
264
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) − 𝐴 ) = ( ( 𝐴 + ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) ) − 𝐴 ) ) |
| 266 |
57
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → 𝐴 ∈ ℂ ) |
| 267 |
66
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∈ ℂ ) |
| 268 |
267 139
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) ∈ ℂ ) |
| 269 |
268
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) ∈ ℂ ) |
| 270 |
266 269
|
pncan2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( ( 𝐴 + ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) ) − 𝐴 ) = ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) ) |
| 271 |
59 265 270
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) − ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) = ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) ) |
| 272 |
11
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → 𝐿 = ( 𝑦 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) ) ) |
| 273 |
|
eqcom |
⊢ ( 𝑦 = ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ↔ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝑦 ) |
| 274 |
273
|
biimpi |
⊢ ( 𝑦 = ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝑦 ) |
| 275 |
274
|
adantl |
⊢ ( ( ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ∧ 𝑦 = ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝑦 ) |
| 276 |
|
neqne |
⊢ ( ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ≠ 𝐵 ) |
| 277 |
276
|
adantr |
⊢ ( ( ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ∧ 𝑦 = ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ≠ 𝐵 ) |
| 278 |
275 277
|
eqnetrrd |
⊢ ( ( ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ∧ 𝑦 = ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) → 𝑦 ≠ 𝐵 ) |
| 279 |
278
|
neneqd |
⊢ ( ( ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ∧ 𝑦 = ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) → ¬ 𝑦 = 𝐵 ) |
| 280 |
279
|
iffalsed |
⊢ ( ( ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ∧ 𝑦 = ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) → if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) = 𝑦 ) |
| 281 |
|
simpr |
⊢ ( ( ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ∧ 𝑦 = ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) → 𝑦 = ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) |
| 282 |
280 281
|
eqtrd |
⊢ ( ( ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ∧ 𝑦 = ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) → if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) = ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) |
| 283 |
282
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ 𝑦 = ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) → if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) = ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) |
| 284 |
55
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ∈ ( 𝐴 (,] 𝐵 ) ) |
| 285 |
272 283 284 284
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) = ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) |
| 286 |
285
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) − ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) = ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) |
| 287 |
|
id |
⊢ ( 𝑥 = ( 𝑆 ‘ ( 𝑗 + 1 ) ) → 𝑥 = ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) |
| 288 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑆 ‘ ( 𝑗 + 1 ) ) → ( 𝐵 − 𝑥 ) = ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 289 |
288
|
oveq1d |
⊢ ( 𝑥 = ( 𝑆 ‘ ( 𝑗 + 1 ) ) → ( ( 𝐵 − 𝑥 ) / 𝑇 ) = ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) |
| 290 |
289
|
fveq2d |
⊢ ( 𝑥 = ( 𝑆 ‘ ( 𝑗 + 1 ) ) → ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) = ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) ) |
| 291 |
290
|
oveq1d |
⊢ ( 𝑥 = ( 𝑆 ‘ ( 𝑗 + 1 ) ) → ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) = ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) |
| 292 |
287 291
|
oveq12d |
⊢ ( 𝑥 = ( 𝑆 ‘ ( 𝑗 + 1 ) ) → ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) = ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 293 |
292
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑥 = ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) → ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) = ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 294 |
129 66
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 295 |
294 102
|
rerpdivcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ∈ ℝ ) |
| 296 |
295
|
flcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) ∈ ℤ ) |
| 297 |
296
|
zred |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) ∈ ℝ ) |
| 298 |
297 86
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ∈ ℝ ) |
| 299 |
66 298
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) ∈ ℝ ) |
| 300 |
121 293 66 299
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) = ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 301 |
300 136
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) = ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) − ( ( 𝑆 ‘ 𝑗 ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) ) ) ) |
| 302 |
301
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) = ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) − ( ( 𝑆 ‘ 𝑗 ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) ) ) ) |
| 303 |
|
flle |
⊢ ( ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ∈ ℝ → ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) ≤ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) |
| 304 |
295 303
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) ≤ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) |
| 305 |
54 66 76
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ 𝑗 ) ≤ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) |
| 306 |
54 66 129 305
|
lesub2dd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ≤ ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) ) |
| 307 |
294 130 102 306
|
lediv1dd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) |
| 308 |
297 295 131 304 307
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) |
| 309 |
308
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) |
| 310 |
297
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) < ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ) → ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) ∈ ℝ ) |
| 311 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) < ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ) → 1 ∈ ℝ ) |
| 312 |
310 311
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) < ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ) → ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ∈ ℝ ) |
| 313 |
131
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) < ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ) → ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ∈ ℝ ) |
| 314 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) < ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ) → ¬ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) < ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ) |
| 315 |
312 313 314
|
nltled |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) < ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ) → ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) |
| 316 |
315
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ¬ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) < ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ) → ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) |
| 317 |
80
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → 𝑆 : ( 0 ... 𝑁 ) –onto→ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) |
| 318 |
89
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → 𝐶 ∈ ℝ ) |
| 319 |
93
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → 𝐷 ∈ ℝ ) |
| 320 |
136 135
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ∈ ℝ ) |
| 321 |
129 320
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 322 |
54 321
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) + ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
| 323 |
12 322
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑍 ∈ ℝ ) |
| 324 |
323
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → 𝑍 ∈ ℝ ) |
| 325 |
20
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 326 |
325
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐴 ∈ ℝ* ) |
| 327 |
|
elioc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ∈ ( 𝐴 (,] 𝐵 ) ↔ ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ∈ ℝ ∧ 𝐴 < ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝐵 ) ) ) |
| 328 |
326 129 327
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ∈ ( 𝐴 (,] 𝐵 ) ↔ ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ∈ ℝ ∧ 𝐴 < ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝐵 ) ) ) |
| 329 |
55 328
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ∈ ℝ ∧ 𝐴 < ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝐵 ) ) |
| 330 |
329
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝐵 ) |
| 331 |
129 320
|
subge0d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 0 ≤ ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ↔ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝐵 ) ) |
| 332 |
330 331
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 0 ≤ ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) |
| 333 |
54 321
|
addge01d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 0 ≤ ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ↔ ( 𝑆 ‘ 𝑗 ) ≤ ( ( 𝑆 ‘ 𝑗 ) + ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) ) ) |
| 334 |
332 333
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ 𝑗 ) ≤ ( ( 𝑆 ‘ 𝑗 ) + ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) ) |
| 335 |
89 54 322 97 334
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐶 ≤ ( ( 𝑆 ‘ 𝑗 ) + ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) ) |
| 336 |
335 12
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐶 ≤ 𝑍 ) |
| 337 |
336
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → 𝐶 ≤ 𝑍 ) |
| 338 |
66
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 339 |
295
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ∈ ℝ ) |
| 340 |
|
reflcl |
⊢ ( ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ∈ ℝ → ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) ∈ ℝ ) |
| 341 |
|
peano2re |
⊢ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) ∈ ℝ → ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ∈ ℝ ) |
| 342 |
339 340 341
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ∈ ℝ ) |
| 343 |
129
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → 𝐵 ∈ ℝ ) |
| 344 |
343 324
|
resubcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → ( 𝐵 − 𝑍 ) ∈ ℝ ) |
| 345 |
102
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → 𝑇 ∈ ℝ+ ) |
| 346 |
344 345
|
rerpdivcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → ( ( 𝐵 − 𝑍 ) / 𝑇 ) ∈ ℝ ) |
| 347 |
|
flltp1 |
⊢ ( ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ∈ ℝ → ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) < ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ) |
| 348 |
295 347
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) < ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ) |
| 349 |
348
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) < ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ) |
| 350 |
296
|
peano2zd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ∈ ℤ ) |
| 351 |
350
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ∈ ℤ ) |
| 352 |
131
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ∈ ℝ ) |
| 353 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) |
| 354 |
321 102
|
rerpdivcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) / 𝑇 ) ∈ ℝ ) |
| 355 |
354
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → ( ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) / 𝑇 ) ∈ ℝ ) |
| 356 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐴 ∈ ℝ ) |
| 357 |
329
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐴 < ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) |
| 358 |
356 320 129 357
|
ltsub2dd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) < ( 𝐵 − 𝐴 ) ) |
| 359 |
358 2
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) < 𝑇 ) |
| 360 |
321 86 102 359
|
ltdiv1dd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) / 𝑇 ) < ( 𝑇 / 𝑇 ) ) |
| 361 |
144 145
|
dividd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑇 / 𝑇 ) = 1 ) |
| 362 |
360 361
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) / 𝑇 ) < 1 ) |
| 363 |
362
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → ( ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) / 𝑇 ) < 1 ) |
| 364 |
130
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) ∈ ℂ ) |
| 365 |
321
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ∈ ℂ ) |
| 366 |
364 365 144 145
|
divsubdird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) − ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) / 𝑇 ) = ( ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − ( ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) / 𝑇 ) ) ) |
| 367 |
366
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − ( ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) / 𝑇 ) ) = ( ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) − ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) / 𝑇 ) ) |
| 368 |
129
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐵 ∈ ℂ ) |
| 369 |
320
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ∈ ℂ ) |
| 370 |
368 139 369
|
nnncan1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) − ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) = ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) ) |
| 371 |
370
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) − ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) / 𝑇 ) = ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) |
| 372 |
367 371
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − ( ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) / 𝑇 ) ) = ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) |
| 373 |
372 148
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − ( ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) / 𝑇 ) ) ∈ ℤ ) |
| 374 |
373
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → ( ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − ( ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) / 𝑇 ) ) ∈ ℤ ) |
| 375 |
351 352 353 355 363 374
|
zltlesub |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − ( ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) / 𝑇 ) ) ) |
| 376 |
12
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑍 = ( ( 𝑆 ‘ 𝑗 ) + ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) ) |
| 377 |
376
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐵 − 𝑍 ) = ( 𝐵 − ( ( 𝑆 ‘ 𝑗 ) + ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) ) ) |
| 378 |
139 368 369
|
addsub12d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) + ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) = ( 𝐵 + ( ( 𝑆 ‘ 𝑗 ) − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) ) |
| 379 |
368 369 139
|
subsub2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐵 − ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) ) = ( 𝐵 + ( ( 𝑆 ‘ 𝑗 ) − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) ) |
| 380 |
378 379
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) + ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) = ( 𝐵 − ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) ) ) |
| 381 |
380
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐵 − ( ( 𝑆 ‘ 𝑗 ) + ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) ) = ( 𝐵 − ( 𝐵 − ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) ) ) ) |
| 382 |
369 139
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) ∈ ℂ ) |
| 383 |
368 382
|
nncand |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐵 − ( 𝐵 − ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) ) ) = ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) ) |
| 384 |
377 381 383
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐵 − 𝑍 ) = ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) ) |
| 385 |
384
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐵 − 𝑍 ) / 𝑇 ) = ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) |
| 386 |
371 367 385
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − ( ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) / 𝑇 ) ) = ( ( 𝐵 − 𝑍 ) / 𝑇 ) ) |
| 387 |
386
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → ( ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) − ( ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) / 𝑇 ) ) = ( ( 𝐵 − 𝑍 ) / 𝑇 ) ) |
| 388 |
375 387
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − 𝑍 ) / 𝑇 ) ) |
| 389 |
339 342 346 349 388
|
ltletrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) < ( ( 𝐵 − 𝑍 ) / 𝑇 ) ) |
| 390 |
294
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 391 |
390 344 345
|
ltdiv1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) < ( 𝐵 − 𝑍 ) ↔ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) < ( ( 𝐵 − 𝑍 ) / 𝑇 ) ) ) |
| 392 |
389 391
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) < ( 𝐵 − 𝑍 ) ) |
| 393 |
324 338 343
|
ltsub2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → ( 𝑍 < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ↔ ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) < ( 𝐵 − 𝑍 ) ) ) |
| 394 |
392 393
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → 𝑍 < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) |
| 395 |
115
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → ( 𝑆 ‘ ( 𝑗 + 1 ) ) ≤ 𝐷 ) |
| 396 |
324 338 319 394 395
|
ltletrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → 𝑍 < 𝐷 ) |
| 397 |
324 319 396
|
ltled |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → 𝑍 ≤ 𝐷 ) |
| 398 |
318 319 324 337 397
|
eliccd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → 𝑍 ∈ ( 𝐶 [,] 𝐷 ) ) |
| 399 |
33
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐵 − 𝐴 ) = 𝑇 ) |
| 400 |
399
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) · ( 𝐵 − 𝐴 ) ) = ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) · 𝑇 ) ) |
| 401 |
382 144 145
|
divcan1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) · 𝑇 ) = ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) ) |
| 402 |
400 401
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) · ( 𝐵 − 𝐴 ) ) = ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) ) |
| 403 |
376 402
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑍 + ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) · ( 𝐵 − 𝐴 ) ) ) = ( ( ( 𝑆 ‘ 𝑗 ) + ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) + ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) ) ) |
| 404 |
139 365
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) + ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) = ( ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) + ( 𝑆 ‘ 𝑗 ) ) ) |
| 405 |
404
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝑆 ‘ 𝑗 ) + ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) + ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) ) = ( ( ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) + ( 𝑆 ‘ 𝑗 ) ) + ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) ) ) |
| 406 |
365 139 369
|
ppncand |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) + ( 𝑆 ‘ 𝑗 ) ) + ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) ) = ( ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) + ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) |
| 407 |
368 369
|
npcand |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) + ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) = 𝐵 ) |
| 408 |
406 407
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) + ( 𝑆 ‘ 𝑗 ) ) + ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) ) = 𝐵 ) |
| 409 |
403 405 408
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑍 + ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) · ( 𝐵 − 𝐴 ) ) ) = 𝐵 ) |
| 410 |
200
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐵 ∈ ran 𝑄 ) |
| 411 |
409 410
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑍 + ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ) |
| 412 |
|
oveq1 |
⊢ ( 𝑘 = ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) → ( 𝑘 · ( 𝐵 − 𝐴 ) ) = ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) · ( 𝐵 − 𝐴 ) ) ) |
| 413 |
412
|
oveq2d |
⊢ ( 𝑘 = ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) → ( 𝑍 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) = ( 𝑍 + ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) · ( 𝐵 − 𝐴 ) ) ) ) |
| 414 |
413
|
eleq1d |
⊢ ( 𝑘 = ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) → ( ( 𝑍 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ↔ ( 𝑍 + ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ) ) |
| 415 |
414
|
rspcev |
⊢ ( ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ∈ ℤ ∧ ( 𝑍 + ( ( ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ) → ∃ 𝑘 ∈ ℤ ( 𝑍 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ) |
| 416 |
148 411 415
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ∃ 𝑘 ∈ ℤ ( 𝑍 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ) |
| 417 |
416
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → ∃ 𝑘 ∈ ℤ ( 𝑍 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ) |
| 418 |
|
oveq1 |
⊢ ( 𝑦 = 𝑍 → ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) = ( 𝑍 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ) |
| 419 |
418
|
eleq1d |
⊢ ( 𝑦 = 𝑍 → ( ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ↔ ( 𝑍 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ) ) |
| 420 |
419
|
rexbidv |
⊢ ( 𝑦 = 𝑍 → ( ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ↔ ∃ 𝑘 ∈ ℤ ( 𝑍 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ) ) |
| 421 |
420
|
elrab |
⊢ ( 𝑍 ∈ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ↔ ( 𝑍 ∈ ( 𝐶 [,] 𝐷 ) ∧ ∃ 𝑘 ∈ ℤ ( 𝑍 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ) ) |
| 422 |
398 417 421
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → 𝑍 ∈ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) |
| 423 |
|
elun2 |
⊢ ( 𝑍 ∈ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } → 𝑍 ∈ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) |
| 424 |
422 423
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → 𝑍 ∈ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) |
| 425 |
|
foelrn |
⊢ ( ( 𝑆 : ( 0 ... 𝑁 ) –onto→ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ∧ 𝑍 ∈ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) → ∃ 𝑖 ∈ ( 0 ... 𝑁 ) 𝑍 = ( 𝑆 ‘ 𝑖 ) ) |
| 426 |
317 424 425
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → ∃ 𝑖 ∈ ( 0 ... 𝑁 ) 𝑍 = ( 𝑆 ‘ 𝑖 ) ) |
| 427 |
54
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝑆 ‘ 𝑗 ) ∈ ℝ ) |
| 428 |
321
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 429 |
320
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ∈ ℝ ) |
| 430 |
21
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → 𝐵 ∈ ℝ ) |
| 431 |
330
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝐵 ) |
| 432 |
276
|
necomd |
⊢ ( ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 → 𝐵 ≠ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) |
| 433 |
432
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → 𝐵 ≠ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) |
| 434 |
429 430 431 433
|
leneltd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) < 𝐵 ) |
| 435 |
429 430
|
posdifd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) < 𝐵 ↔ 0 < ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) ) |
| 436 |
434 435
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → 0 < ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) |
| 437 |
428 436
|
elrpd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ∈ ℝ+ ) |
| 438 |
427 437
|
ltaddrpd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝑆 ‘ 𝑗 ) < ( ( 𝑆 ‘ 𝑗 ) + ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) ) |
| 439 |
438 12
|
breqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝑆 ‘ 𝑗 ) < 𝑍 ) |
| 440 |
439
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) ∧ 𝑍 = ( 𝑆 ‘ 𝑖 ) ) → ( 𝑆 ‘ 𝑗 ) < 𝑍 ) |
| 441 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) ∧ 𝑍 = ( 𝑆 ‘ 𝑖 ) ) → 𝑍 = ( 𝑆 ‘ 𝑖 ) ) |
| 442 |
440 441
|
breqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) ∧ 𝑍 = ( 𝑆 ‘ 𝑖 ) ) → ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ 𝑖 ) ) |
| 443 |
394
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) ∧ 𝑍 = ( 𝑆 ‘ 𝑖 ) ) → 𝑍 < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) |
| 444 |
441 443
|
eqbrtrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) ∧ 𝑍 = ( 𝑆 ‘ 𝑖 ) ) → ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) |
| 445 |
442 444
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) ∧ 𝑍 = ( 𝑆 ‘ 𝑖 ) ) → ( ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ 𝑖 ) ∧ ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 446 |
445
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → ( 𝑍 = ( 𝑆 ‘ 𝑖 ) → ( ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ 𝑖 ) ∧ ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 447 |
446
|
reximdv |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → ( ∃ 𝑖 ∈ ( 0 ... 𝑁 ) 𝑍 = ( 𝑆 ‘ 𝑖 ) → ∃ 𝑖 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ 𝑖 ) ∧ ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 448 |
426 447
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) → ∃ 𝑖 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ 𝑖 ) ∧ ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 449 |
316 448
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ¬ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) < ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ) → ∃ 𝑖 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ 𝑖 ) ∧ ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 450 |
252
|
nrexdv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ¬ ∃ 𝑖 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ 𝑖 ) ∧ ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 451 |
450
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ¬ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) < ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ) → ¬ ∃ 𝑖 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ 𝑖 ) ∧ ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 452 |
449 451
|
condan |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) < ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ) |
| 453 |
309 452
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ∧ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) < ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ) ) |
| 454 |
131
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ∈ ℝ ) |
| 455 |
296
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) ∈ ℤ ) |
| 456 |
|
flbi |
⊢ ( ( ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ∈ ℝ ∧ ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) ∈ ℤ ) → ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) = ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) ↔ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ∧ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) < ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ) ) ) |
| 457 |
454 455 456
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) = ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) ↔ ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) ≤ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ∧ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) < ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) + 1 ) ) ) ) |
| 458 |
453 457
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) = ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) ) |
| 459 |
458
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) = ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) ) |
| 460 |
459
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) = ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) ) |
| 461 |
460
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) = ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 462 |
461
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) − ( ( 𝑆 ‘ 𝑗 ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) ) ) = ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) ) − ( ( 𝑆 ‘ 𝑗 ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) ) ) ) |
| 463 |
267
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∈ ℂ ) |
| 464 |
139
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝑆 ‘ 𝑗 ) ∈ ℂ ) |
| 465 |
140
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) ∈ ℂ ) |
| 466 |
463 464 465
|
pnpcan2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) ) − ( ( 𝑆 ‘ 𝑗 ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) ) ) = ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) ) |
| 467 |
462 466
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) − ( ( 𝑆 ‘ 𝑗 ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ 𝑗 ) ) / 𝑇 ) ) · 𝑇 ) ) ) = ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) ) |
| 468 |
286 302 467
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) − ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) = ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) ) |
| 469 |
271 468
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) − ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) = ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) ) |