Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem66.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
2 |
|
fourierdlem66.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
3 |
|
fourierdlem66.y |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
4 |
|
fourierdlem66.w |
⊢ ( 𝜑 → 𝑊 ∈ ℝ ) |
5 |
|
fourierdlem66.d |
⊢ 𝐷 = ( 𝑛 ∈ ℕ ↦ ( 𝑠 ∈ ℝ ↦ if ( ( 𝑠 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) ) |
6 |
|
fourierdlem66.h |
⊢ 𝐻 = ( 𝑠 ∈ ( - π [,] π ) ↦ if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) ) |
7 |
|
fourierdlem66.k |
⊢ 𝐾 = ( 𝑠 ∈ ( - π [,] π ) ↦ if ( 𝑠 = 0 , 1 , ( 𝑠 / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) |
8 |
|
fourierdlem66.u |
⊢ 𝑈 = ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ) |
9 |
|
fourierdlem66.s |
⊢ 𝑆 = ( 𝑠 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) ) |
10 |
|
fourierdlem66.g |
⊢ 𝐺 = ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝑈 ‘ 𝑠 ) · ( 𝑆 ‘ 𝑠 ) ) ) |
11 |
|
fourierdlem66.a |
⊢ 𝐴 = ( ( - π [,] π ) ∖ { 0 } ) |
12 |
11
|
eqimssi |
⊢ 𝐴 ⊆ ( ( - π [,] π ) ∖ { 0 } ) |
13 |
|
difss |
⊢ ( ( - π [,] π ) ∖ { 0 } ) ⊆ ( - π [,] π ) |
14 |
12 13
|
sstri |
⊢ 𝐴 ⊆ ( - π [,] π ) |
15 |
14
|
a1i |
⊢ ( 𝜑 → 𝐴 ⊆ ( - π [,] π ) ) |
16 |
15
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 𝑠 ∈ ( - π [,] π ) ) |
17 |
16
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → 𝑠 ∈ ( - π [,] π ) ) |
18 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐹 : ℝ ⟶ ℝ ) |
19 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑋 ∈ ℝ ) |
20 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑌 ∈ ℝ ) |
21 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑊 ∈ ℝ ) |
22 |
18 19 20 21 6 7 8
|
fourierdlem55 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑈 : ( - π [,] π ) ⟶ ℝ ) |
23 |
22
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → 𝑈 : ( - π [,] π ) ⟶ ℝ ) |
24 |
23 17
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝑈 ‘ 𝑠 ) ∈ ℝ ) |
25 |
|
nnre |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) |
26 |
9
|
fourierdlem5 |
⊢ ( 𝑛 ∈ ℝ → 𝑆 : ( - π [,] π ) ⟶ ℝ ) |
27 |
25 26
|
syl |
⊢ ( 𝑛 ∈ ℕ → 𝑆 : ( - π [,] π ) ⟶ ℝ ) |
28 |
27
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → 𝑆 : ( - π [,] π ) ⟶ ℝ ) |
29 |
28 17
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝑆 ‘ 𝑠 ) ∈ ℝ ) |
30 |
24 29
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝑈 ‘ 𝑠 ) · ( 𝑆 ‘ 𝑠 ) ) ∈ ℝ ) |
31 |
10
|
fvmpt2 |
⊢ ( ( 𝑠 ∈ ( - π [,] π ) ∧ ( ( 𝑈 ‘ 𝑠 ) · ( 𝑆 ‘ 𝑠 ) ) ∈ ℝ ) → ( 𝐺 ‘ 𝑠 ) = ( ( 𝑈 ‘ 𝑠 ) · ( 𝑆 ‘ 𝑠 ) ) ) |
32 |
17 30 31
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑠 ) = ( ( 𝑈 ‘ 𝑠 ) · ( 𝑆 ‘ 𝑠 ) ) ) |
33 |
1 2 3 4 6
|
fourierdlem9 |
⊢ ( 𝜑 → 𝐻 : ( - π [,] π ) ⟶ ℝ ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 𝐻 : ( - π [,] π ) ⟶ ℝ ) |
35 |
34 16
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑠 ) ∈ ℝ ) |
36 |
7
|
fourierdlem43 |
⊢ 𝐾 : ( - π [,] π ) ⟶ ℝ |
37 |
36
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 𝐾 : ( - π [,] π ) ⟶ ℝ ) |
38 |
37 16
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( 𝐾 ‘ 𝑠 ) ∈ ℝ ) |
39 |
35 38
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ∈ ℝ ) |
40 |
8
|
fvmpt2 |
⊢ ( ( 𝑠 ∈ ( - π [,] π ) ∧ ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ∈ ℝ ) → ( 𝑈 ‘ 𝑠 ) = ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ) |
41 |
16 39 40
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( 𝑈 ‘ 𝑠 ) = ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ) |
42 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 0 ∈ ℝ ) |
43 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 𝐹 : ℝ ⟶ ℝ ) |
44 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 𝑋 ∈ ℝ ) |
45 |
|
pire |
⊢ π ∈ ℝ |
46 |
45
|
renegcli |
⊢ - π ∈ ℝ |
47 |
|
iccssre |
⊢ ( ( - π ∈ ℝ ∧ π ∈ ℝ ) → ( - π [,] π ) ⊆ ℝ ) |
48 |
46 45 47
|
mp2an |
⊢ ( - π [,] π ) ⊆ ℝ |
49 |
14
|
sseli |
⊢ ( 𝑠 ∈ 𝐴 → 𝑠 ∈ ( - π [,] π ) ) |
50 |
48 49
|
sselid |
⊢ ( 𝑠 ∈ 𝐴 → 𝑠 ∈ ℝ ) |
51 |
50
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 𝑠 ∈ ℝ ) |
52 |
44 51
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
53 |
43 52
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℝ ) |
54 |
3 4
|
ifcld |
⊢ ( 𝜑 → if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ∈ ℝ ) |
55 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ∈ ℝ ) |
56 |
53 55
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) ∈ ℝ ) |
57 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 𝑠 ∈ 𝐴 ) |
58 |
12 57
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 𝑠 ∈ ( ( - π [,] π ) ∖ { 0 } ) ) |
59 |
58
|
eldifbd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ¬ 𝑠 ∈ { 0 } ) |
60 |
|
velsn |
⊢ ( 𝑠 ∈ { 0 } ↔ 𝑠 = 0 ) |
61 |
59 60
|
sylnib |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ¬ 𝑠 = 0 ) |
62 |
61
|
neqned |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 𝑠 ≠ 0 ) |
63 |
56 51 62
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ∈ ℝ ) |
64 |
42 63
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) ∈ ℝ ) |
65 |
6
|
fvmpt2 |
⊢ ( ( 𝑠 ∈ ( - π [,] π ) ∧ if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) ∈ ℝ ) → ( 𝐻 ‘ 𝑠 ) = if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) ) |
66 |
16 64 65
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑠 ) = if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) ) |
67 |
61
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) = ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) |
68 |
66 67
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑠 ) = ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) |
69 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 1 ∈ ℝ ) |
70 |
|
2re |
⊢ 2 ∈ ℝ |
71 |
70
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 2 ∈ ℝ ) |
72 |
51
|
rehalfcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( 𝑠 / 2 ) ∈ ℝ ) |
73 |
72
|
resincld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( sin ‘ ( 𝑠 / 2 ) ) ∈ ℝ ) |
74 |
71 73
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ∈ ℝ ) |
75 |
|
2cnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 2 ∈ ℂ ) |
76 |
73
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( sin ‘ ( 𝑠 / 2 ) ) ∈ ℂ ) |
77 |
|
2ne0 |
⊢ 2 ≠ 0 |
78 |
77
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 2 ≠ 0 ) |
79 |
|
fourierdlem44 |
⊢ ( ( 𝑠 ∈ ( - π [,] π ) ∧ 𝑠 ≠ 0 ) → ( sin ‘ ( 𝑠 / 2 ) ) ≠ 0 ) |
80 |
16 62 79
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( sin ‘ ( 𝑠 / 2 ) ) ≠ 0 ) |
81 |
75 76 78 80
|
mulne0d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ≠ 0 ) |
82 |
51 74 81
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( 𝑠 / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ∈ ℝ ) |
83 |
69 82
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → if ( 𝑠 = 0 , 1 , ( 𝑠 / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ∈ ℝ ) |
84 |
7
|
fvmpt2 |
⊢ ( ( 𝑠 ∈ ( - π [,] π ) ∧ if ( 𝑠 = 0 , 1 , ( 𝑠 / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ∈ ℝ ) → ( 𝐾 ‘ 𝑠 ) = if ( 𝑠 = 0 , 1 , ( 𝑠 / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) |
85 |
16 83 84
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( 𝐾 ‘ 𝑠 ) = if ( 𝑠 = 0 , 1 , ( 𝑠 / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) |
86 |
61
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → if ( 𝑠 = 0 , 1 , ( 𝑠 / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) = ( 𝑠 / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) |
87 |
85 86
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( 𝐾 ‘ 𝑠 ) = ( 𝑠 / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) |
88 |
68 87
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) = ( ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) · ( 𝑠 / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) |
89 |
56
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) ∈ ℂ ) |
90 |
51
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 𝑠 ∈ ℂ ) |
91 |
75 76
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ∈ ℂ ) |
92 |
89 90 91 62 81
|
dmdcan2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) · ( 𝑠 / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) = ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) |
93 |
41 88 92
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( 𝑈 ‘ 𝑠 ) = ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) |
94 |
93
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝑈 ‘ 𝑠 ) = ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) |
95 |
25
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → 𝑛 ∈ ℝ ) |
96 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → 1 ∈ ℝ ) |
97 |
96
|
rehalfcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( 1 / 2 ) ∈ ℝ ) |
98 |
95 97
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝑛 + ( 1 / 2 ) ) ∈ ℝ ) |
99 |
50
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → 𝑠 ∈ ℝ ) |
100 |
98 99
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ∈ ℝ ) |
101 |
100
|
resincld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) ∈ ℝ ) |
102 |
9
|
fvmpt2 |
⊢ ( ( 𝑠 ∈ ( - π [,] π ) ∧ ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) ∈ ℝ ) → ( 𝑆 ‘ 𝑠 ) = ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) ) |
103 |
17 101 102
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝑆 ‘ 𝑠 ) = ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) ) |
104 |
94 103
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝑈 ‘ 𝑠 ) · ( 𝑆 ‘ 𝑠 ) ) = ( ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) · ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) ) ) |
105 |
89
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) ∈ ℂ ) |
106 |
91
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ∈ ℂ ) |
107 |
101
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) ∈ ℂ ) |
108 |
81
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ≠ 0 ) |
109 |
105 106 107 108
|
div32d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) · ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) ) = ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) |
110 |
25
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → 𝑛 ∈ ℝ ) |
111 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
112 |
111
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → ( 1 / 2 ) ∈ ℝ ) |
113 |
110 112
|
readdcld |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → ( 𝑛 + ( 1 / 2 ) ) ∈ ℝ ) |
114 |
50
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → 𝑠 ∈ ℝ ) |
115 |
113 114
|
remulcld |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ∈ ℝ ) |
116 |
115
|
resincld |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) ∈ ℝ ) |
117 |
116
|
recnd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) ∈ ℂ ) |
118 |
70
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → 2 ∈ ℝ ) |
119 |
114
|
rehalfcld |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → ( 𝑠 / 2 ) ∈ ℝ ) |
120 |
119
|
resincld |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → ( sin ‘ ( 𝑠 / 2 ) ) ∈ ℝ ) |
121 |
118 120
|
remulcld |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ∈ ℝ ) |
122 |
121
|
recnd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ∈ ℂ ) |
123 |
|
picn |
⊢ π ∈ ℂ |
124 |
123
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → π ∈ ℂ ) |
125 |
|
2cnd |
⊢ ( 𝑠 ∈ 𝐴 → 2 ∈ ℂ ) |
126 |
|
rehalfcl |
⊢ ( 𝑠 ∈ ℝ → ( 𝑠 / 2 ) ∈ ℝ ) |
127 |
|
resincl |
⊢ ( ( 𝑠 / 2 ) ∈ ℝ → ( sin ‘ ( 𝑠 / 2 ) ) ∈ ℝ ) |
128 |
50 126 127
|
3syl |
⊢ ( 𝑠 ∈ 𝐴 → ( sin ‘ ( 𝑠 / 2 ) ) ∈ ℝ ) |
129 |
128
|
recnd |
⊢ ( 𝑠 ∈ 𝐴 → ( sin ‘ ( 𝑠 / 2 ) ) ∈ ℂ ) |
130 |
77
|
a1i |
⊢ ( 𝑠 ∈ 𝐴 → 2 ≠ 0 ) |
131 |
|
eldifsni |
⊢ ( 𝑠 ∈ ( ( - π [,] π ) ∖ { 0 } ) → 𝑠 ≠ 0 ) |
132 |
131 11
|
eleq2s |
⊢ ( 𝑠 ∈ 𝐴 → 𝑠 ≠ 0 ) |
133 |
49 132 79
|
syl2anc |
⊢ ( 𝑠 ∈ 𝐴 → ( sin ‘ ( 𝑠 / 2 ) ) ≠ 0 ) |
134 |
125 129 130 133
|
mulne0d |
⊢ ( 𝑠 ∈ 𝐴 → ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ≠ 0 ) |
135 |
134
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ≠ 0 ) |
136 |
|
0re |
⊢ 0 ∈ ℝ |
137 |
|
pipos |
⊢ 0 < π |
138 |
136 137
|
gtneii |
⊢ π ≠ 0 |
139 |
138
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → π ≠ 0 ) |
140 |
117 122 124 135 139
|
divdiv1d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → ( ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) / π ) = ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) / ( ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) · π ) ) ) |
141 |
|
2cnd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → 2 ∈ ℂ ) |
142 |
129
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → ( sin ‘ ( 𝑠 / 2 ) ) ∈ ℂ ) |
143 |
141 142 124
|
mulassd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → ( ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) · π ) = ( 2 · ( ( sin ‘ ( 𝑠 / 2 ) ) · π ) ) ) |
144 |
143
|
oveq2d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) / ( ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) · π ) ) = ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) / ( 2 · ( ( sin ‘ ( 𝑠 / 2 ) ) · π ) ) ) ) |
145 |
142 124
|
mulcomd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → ( ( sin ‘ ( 𝑠 / 2 ) ) · π ) = ( π · ( sin ‘ ( 𝑠 / 2 ) ) ) ) |
146 |
145
|
oveq2d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → ( 2 · ( ( sin ‘ ( 𝑠 / 2 ) ) · π ) ) = ( 2 · ( π · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) |
147 |
141 124 142
|
mulassd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → ( ( 2 · π ) · ( sin ‘ ( 𝑠 / 2 ) ) ) = ( 2 · ( π · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) |
148 |
146 147
|
eqtr4d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → ( 2 · ( ( sin ‘ ( 𝑠 / 2 ) ) · π ) ) = ( ( 2 · π ) · ( sin ‘ ( 𝑠 / 2 ) ) ) ) |
149 |
148
|
oveq2d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) / ( 2 · ( ( sin ‘ ( 𝑠 / 2 ) ) · π ) ) ) = ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) |
150 |
140 144 149
|
3eqtrd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → ( ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) / π ) = ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) |
151 |
150
|
oveq2d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → ( π · ( ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) / π ) ) = ( π · ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) |
152 |
116 121 135
|
redivcld |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ∈ ℝ ) |
153 |
152
|
recnd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ∈ ℂ ) |
154 |
153 124 139
|
divcan2d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → ( π · ( ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) / π ) ) = ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) |
155 |
5
|
dirkerval2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) = if ( ( 𝑠 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) |
156 |
50 155
|
sylan2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) = if ( ( 𝑠 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) |
157 |
|
fourierdlem24 |
⊢ ( 𝑠 ∈ ( ( - π [,] π ) ∖ { 0 } ) → ( 𝑠 mod ( 2 · π ) ) ≠ 0 ) |
158 |
157 11
|
eleq2s |
⊢ ( 𝑠 ∈ 𝐴 → ( 𝑠 mod ( 2 · π ) ) ≠ 0 ) |
159 |
158
|
neneqd |
⊢ ( 𝑠 ∈ 𝐴 → ¬ ( 𝑠 mod ( 2 · π ) ) = 0 ) |
160 |
159
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → ¬ ( 𝑠 mod ( 2 · π ) ) = 0 ) |
161 |
160
|
iffalsed |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → if ( ( 𝑠 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) = ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) |
162 |
156 161
|
eqtr2d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑠 / 2 ) ) ) ) = ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) |
163 |
162
|
oveq2d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → ( π · ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) = ( π · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
164 |
151 154 163
|
3eqtr3d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) = ( π · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
165 |
164
|
oveq2d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) = ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( π · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ) |
166 |
165
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) = ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( π · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ) |
167 |
123
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → π ∈ ℂ ) |
168 |
5
|
dirkerre |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ∈ ℝ ) |
169 |
50 168
|
sylan2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ∈ ℝ ) |
170 |
169
|
recnd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ∈ ℂ ) |
171 |
170
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ∈ ℂ ) |
172 |
105 167 171
|
mul12d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( π · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) = ( π · ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ) |
173 |
109 166 172
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) · ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) ) = ( π · ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ) |
174 |
32 104 173
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑠 ) = ( π · ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ) |