Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem69.p |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
2 |
|
fourierdlem69.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
3 |
|
fourierdlem69.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
4 |
|
fourierdlem69.f |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
5 |
|
fourierdlem69.fcn |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
6 |
|
fourierdlem69.r |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
7 |
|
fourierdlem69.l |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
8 |
1
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
9 |
2 8
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
10 |
3 9
|
mpbid |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
11 |
10
|
simprd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
12 |
11
|
simpld |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ) |
13 |
12
|
simpld |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = 𝐴 ) |
14 |
12
|
simprd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) = 𝐵 ) |
15 |
13 14
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) = ( 𝐴 [,] 𝐵 ) ) |
16 |
15
|
feq2d |
⊢ ( 𝜑 → ( 𝐹 : ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ⟶ ℂ ↔ 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) ) |
17 |
4 16
|
mpbird |
⊢ ( 𝜑 → 𝐹 : ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ⟶ ℂ ) |
18 |
17
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
19 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
20 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
21 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
22 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
23 |
22
|
fveq2i |
⊢ ( ℤ≥ ‘ 1 ) = ( ℤ≥ ‘ ( 0 + 1 ) ) |
24 |
21 23
|
eqtri |
⊢ ℕ = ( ℤ≥ ‘ ( 0 + 1 ) ) |
25 |
2 24
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ) |
26 |
10
|
simpld |
⊢ ( 𝜑 → 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
27 |
|
elmapi |
⊢ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
28 |
26 27
|
syl |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
29 |
28
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
30 |
11
|
simprd |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
31 |
30
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
32 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
33 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) → 𝑥 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) |
34 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) → ( 𝑄 ‘ 0 ) = 𝐴 ) |
35 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) → ( 𝑄 ‘ 𝑀 ) = 𝐵 ) |
36 |
34 35
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) → ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) = ( 𝐴 [,] 𝐵 ) ) |
37 |
33 36
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
38 |
32 37
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
39 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
40 |
|
elfzofz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
41 |
40
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
42 |
39 41
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
43 |
|
fzofzp1 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
44 |
43
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
45 |
39 44
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
46 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
47 |
|
ioossicc |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
48 |
1 2 3
|
fourierdlem11 |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ) |
49 |
48
|
simp1d |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
50 |
49
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐴 ∈ ℝ* ) |
52 |
48
|
simp2d |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
53 |
52
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
54 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐵 ∈ ℝ* ) |
55 |
1 2 3
|
fourierdlem15 |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
57 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
58 |
51 54 56 57
|
fourierdlem8 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
59 |
47 58
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
60 |
46 59
|
feqresmpt |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
61 |
60 5
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
62 |
60
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
63 |
7 62
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
64 |
60
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
65 |
6 64
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
66 |
42 45 61 63 65
|
iblcncfioo |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
67 |
46
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
68 |
58
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
69 |
67 68
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
70 |
42 45 66 69
|
ibliooicc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
71 |
19 20 25 29 31 38 70
|
iblspltprt |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
72 |
18 71
|
eqeltrd |
⊢ ( 𝜑 → 𝐹 ∈ 𝐿1 ) |