Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem70.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
fourierdlem70.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
fourierdlem70.aleb |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
4 |
|
fourierdlem70.f |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
5 |
|
fourierdlem70.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
6 |
|
fourierdlem70.q |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
7 |
|
fourierdlem70.q0 |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = 𝐴 ) |
8 |
|
fourierdlem70.qm |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) = 𝐵 ) |
9 |
|
fourierdlem70.qlt |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
10 |
|
fourierdlem70.fcn |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
11 |
|
fourierdlem70.r |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
12 |
|
fourierdlem70.l |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
13 |
|
fourierdlem70.i |
⊢ 𝐼 = ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
14 |
|
prfi |
⊢ { ran 𝑄 , ∪ ran 𝐼 } ∈ Fin |
15 |
14
|
a1i |
⊢ ( 𝜑 → { ran 𝑄 , ∪ ran 𝐼 } ∈ Fin ) |
16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ { ran 𝑄 , ∪ ran 𝐼 } ) → 𝑠 ∈ ∪ { ran 𝑄 , ∪ ran 𝐼 } ) |
17 |
|
ovex |
⊢ ( 0 ... 𝑀 ) ∈ V |
18 |
|
fex |
⊢ ( ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ∧ ( 0 ... 𝑀 ) ∈ V ) → 𝑄 ∈ V ) |
19 |
6 17 18
|
sylancl |
⊢ ( 𝜑 → 𝑄 ∈ V ) |
20 |
|
rnexg |
⊢ ( 𝑄 ∈ V → ran 𝑄 ∈ V ) |
21 |
19 20
|
syl |
⊢ ( 𝜑 → ran 𝑄 ∈ V ) |
22 |
|
fzofi |
⊢ ( 0 ..^ 𝑀 ) ∈ Fin |
23 |
13
|
rnmptfi |
⊢ ( ( 0 ..^ 𝑀 ) ∈ Fin → ran 𝐼 ∈ Fin ) |
24 |
22 23
|
ax-mp |
⊢ ran 𝐼 ∈ Fin |
25 |
24
|
elexi |
⊢ ran 𝐼 ∈ V |
26 |
25
|
uniex |
⊢ ∪ ran 𝐼 ∈ V |
27 |
|
uniprg |
⊢ ( ( ran 𝑄 ∈ V ∧ ∪ ran 𝐼 ∈ V ) → ∪ { ran 𝑄 , ∪ ran 𝐼 } = ( ran 𝑄 ∪ ∪ ran 𝐼 ) ) |
28 |
21 26 27
|
sylancl |
⊢ ( 𝜑 → ∪ { ran 𝑄 , ∪ ran 𝐼 } = ( ran 𝑄 ∪ ∪ ran 𝐼 ) ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ { ran 𝑄 , ∪ ran 𝐼 } ) → ∪ { ran 𝑄 , ∪ ran 𝐼 } = ( ran 𝑄 ∪ ∪ ran 𝐼 ) ) |
30 |
16 29
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ { ran 𝑄 , ∪ ran 𝐼 } ) → 𝑠 ∈ ( ran 𝑄 ∪ ∪ ran 𝐼 ) ) |
31 |
|
eqid |
⊢ ( 𝑦 ∈ ℕ ↦ { 𝑣 ∈ ( ℝ ↑m ( 0 ... 𝑦 ) ) ∣ ( ( ( 𝑣 ‘ 0 ) = 𝐴 ∧ ( 𝑣 ‘ 𝑦 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑦 ) ( 𝑣 ‘ 𝑖 ) < ( 𝑣 ‘ ( 𝑖 + 1 ) ) ) } ) = ( 𝑦 ∈ ℕ ↦ { 𝑣 ∈ ( ℝ ↑m ( 0 ... 𝑦 ) ) ∣ ( ( ( 𝑣 ‘ 0 ) = 𝐴 ∧ ( 𝑣 ‘ 𝑦 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑦 ) ( 𝑣 ‘ 𝑖 ) < ( 𝑣 ‘ ( 𝑖 + 1 ) ) ) } ) |
32 |
|
reex |
⊢ ℝ ∈ V |
33 |
32 17
|
elmap |
⊢ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ↔ 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
34 |
6 33
|
sylibr |
⊢ ( 𝜑 → 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
35 |
7 8
|
jca |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ) |
36 |
9
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
37 |
34 35 36
|
jca32 |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
38 |
31
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( ( 𝑦 ∈ ℕ ↦ { 𝑣 ∈ ( ℝ ↑m ( 0 ... 𝑦 ) ) ∣ ( ( ( 𝑣 ‘ 0 ) = 𝐴 ∧ ( 𝑣 ‘ 𝑦 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑦 ) ( 𝑣 ‘ 𝑖 ) < ( 𝑣 ‘ ( 𝑖 + 1 ) ) ) } ) ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
39 |
5 38
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ( 𝑦 ∈ ℕ ↦ { 𝑣 ∈ ( ℝ ↑m ( 0 ... 𝑦 ) ) ∣ ( ( ( 𝑣 ‘ 0 ) = 𝐴 ∧ ( 𝑣 ‘ 𝑦 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑦 ) ( 𝑣 ‘ 𝑖 ) < ( 𝑣 ‘ ( 𝑖 + 1 ) ) ) } ) ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
40 |
37 39
|
mpbird |
⊢ ( 𝜑 → 𝑄 ∈ ( ( 𝑦 ∈ ℕ ↦ { 𝑣 ∈ ( ℝ ↑m ( 0 ... 𝑦 ) ) ∣ ( ( ( 𝑣 ‘ 0 ) = 𝐴 ∧ ( 𝑣 ‘ 𝑦 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑦 ) ( 𝑣 ‘ 𝑖 ) < ( 𝑣 ‘ ( 𝑖 + 1 ) ) ) } ) ‘ 𝑀 ) ) |
41 |
31 5 40
|
fourierdlem15 |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
42 |
41
|
frnd |
⊢ ( 𝜑 → ran 𝑄 ⊆ ( 𝐴 [,] 𝐵 ) ) |
43 |
42
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ran 𝑄 ) → 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) |
44 |
43
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( ran 𝑄 ∪ ∪ ran 𝐼 ) ) ∧ 𝑠 ∈ ran 𝑄 ) → 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) |
45 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( ran 𝑄 ∪ ∪ ran 𝐼 ) ) ∧ ¬ 𝑠 ∈ ran 𝑄 ) → 𝜑 ) |
46 |
|
elunnel1 |
⊢ ( ( 𝑠 ∈ ( ran 𝑄 ∪ ∪ ran 𝐼 ) ∧ ¬ 𝑠 ∈ ran 𝑄 ) → 𝑠 ∈ ∪ ran 𝐼 ) |
47 |
46
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( ran 𝑄 ∪ ∪ ran 𝐼 ) ) ∧ ¬ 𝑠 ∈ ran 𝑄 ) → 𝑠 ∈ ∪ ran 𝐼 ) |
48 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ran 𝐼 ) → 𝑠 ∈ ∪ ran 𝐼 ) |
49 |
13
|
funmpt2 |
⊢ Fun 𝐼 |
50 |
|
elunirn |
⊢ ( Fun 𝐼 → ( 𝑠 ∈ ∪ ran 𝐼 ↔ ∃ 𝑖 ∈ dom 𝐼 𝑠 ∈ ( 𝐼 ‘ 𝑖 ) ) ) |
51 |
49 50
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ran 𝐼 ) → ( 𝑠 ∈ ∪ ran 𝐼 ↔ ∃ 𝑖 ∈ dom 𝐼 𝑠 ∈ ( 𝐼 ‘ 𝑖 ) ) ) |
52 |
48 51
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ran 𝐼 ) → ∃ 𝑖 ∈ dom 𝐼 𝑠 ∈ ( 𝐼 ‘ 𝑖 ) ) |
53 |
|
id |
⊢ ( 𝑖 ∈ dom 𝐼 → 𝑖 ∈ dom 𝐼 ) |
54 |
|
ovex |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∈ V |
55 |
54 13
|
dmmpti |
⊢ dom 𝐼 = ( 0 ..^ 𝑀 ) |
56 |
53 55
|
eleqtrdi |
⊢ ( 𝑖 ∈ dom 𝐼 → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
57 |
13
|
fvmpt2 |
⊢ ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∈ V ) → ( 𝐼 ‘ 𝑖 ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
58 |
56 54 57
|
sylancl |
⊢ ( 𝑖 ∈ dom 𝐼 → ( 𝐼 ‘ 𝑖 ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
59 |
58
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑖 ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
60 |
|
ioossicc |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
61 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
62 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ) → 𝐴 ∈ ℝ* ) |
63 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
64 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ) → 𝐵 ∈ ℝ* ) |
65 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
66 |
56
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
67 |
62 64 65 66
|
fourierdlem8 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ) → ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
68 |
60 67
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
69 |
59 68
|
eqsstrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑖 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
70 |
69
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ∧ 𝑠 ∈ ( 𝐼 ‘ 𝑖 ) ) → ( 𝐼 ‘ 𝑖 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
71 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ∧ 𝑠 ∈ ( 𝐼 ‘ 𝑖 ) ) → 𝑠 ∈ ( 𝐼 ‘ 𝑖 ) ) |
72 |
70 71
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ∧ 𝑠 ∈ ( 𝐼 ‘ 𝑖 ) ) → 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) |
73 |
72
|
3exp |
⊢ ( 𝜑 → ( 𝑖 ∈ dom 𝐼 → ( 𝑠 ∈ ( 𝐼 ‘ 𝑖 ) → 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) ) ) |
74 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ran 𝐼 ) → ( 𝑖 ∈ dom 𝐼 → ( 𝑠 ∈ ( 𝐼 ‘ 𝑖 ) → 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) ) ) |
75 |
74
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ran 𝐼 ) → ( ∃ 𝑖 ∈ dom 𝐼 𝑠 ∈ ( 𝐼 ‘ 𝑖 ) → 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
76 |
52 75
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ran 𝐼 ) → 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) |
77 |
45 47 76
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( ran 𝑄 ∪ ∪ ran 𝐼 ) ) ∧ ¬ 𝑠 ∈ ran 𝑄 ) → 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) |
78 |
44 77
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ran 𝑄 ∪ ∪ ran 𝐼 ) ) → 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) |
79 |
30 78
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ { ran 𝑄 , ∪ ran 𝐼 } ) → 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) |
80 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑠 ) ∈ ℝ ) |
81 |
79 80
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ { ran 𝑄 , ∪ ran 𝐼 } ) → ( 𝐹 ‘ 𝑠 ) ∈ ℝ ) |
82 |
81
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ { ran 𝑄 , ∪ ran 𝐼 } ) → ( 𝐹 ‘ 𝑠 ) ∈ ℂ ) |
83 |
82
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ { ran 𝑄 , ∪ ran 𝐼 } ) → ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ∈ ℝ ) |
84 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 = ran 𝑄 ) → 𝑤 = ran 𝑄 ) |
85 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 = ran 𝑄 ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
86 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑤 = ran 𝑄 ) → ( 0 ... 𝑀 ) ∈ Fin ) |
87 |
|
rnffi |
⊢ ( ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ∧ ( 0 ... 𝑀 ) ∈ Fin ) → ran 𝑄 ∈ Fin ) |
88 |
85 86 87
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 = ran 𝑄 ) → ran 𝑄 ∈ Fin ) |
89 |
84 88
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑤 = ran 𝑄 ) → 𝑤 ∈ Fin ) |
90 |
89
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ { ran 𝑄 , ∪ ran 𝐼 } ) ∧ 𝑤 = ran 𝑄 ) → 𝑤 ∈ Fin ) |
91 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ran 𝑄 ) ∧ 𝑠 ∈ 𝑤 ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
92 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ran 𝑄 ) ∧ 𝑠 ∈ 𝑤 ) → 𝜑 ) |
93 |
|
simpr |
⊢ ( ( 𝑤 = ran 𝑄 ∧ 𝑠 ∈ 𝑤 ) → 𝑠 ∈ 𝑤 ) |
94 |
|
simpl |
⊢ ( ( 𝑤 = ran 𝑄 ∧ 𝑠 ∈ 𝑤 ) → 𝑤 = ran 𝑄 ) |
95 |
93 94
|
eleqtrd |
⊢ ( ( 𝑤 = ran 𝑄 ∧ 𝑠 ∈ 𝑤 ) → 𝑠 ∈ ran 𝑄 ) |
96 |
95
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ran 𝑄 ) ∧ 𝑠 ∈ 𝑤 ) → 𝑠 ∈ ran 𝑄 ) |
97 |
92 96 43
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ran 𝑄 ) ∧ 𝑠 ∈ 𝑤 ) → 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) |
98 |
91 97
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ran 𝑄 ) ∧ 𝑠 ∈ 𝑤 ) → ( 𝐹 ‘ 𝑠 ) ∈ ℝ ) |
99 |
98
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ran 𝑄 ) ∧ 𝑠 ∈ 𝑤 ) → ( 𝐹 ‘ 𝑠 ) ∈ ℂ ) |
100 |
99
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ran 𝑄 ) ∧ 𝑠 ∈ 𝑤 ) → ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ∈ ℝ ) |
101 |
100
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑤 = ran 𝑄 ) → ∀ 𝑠 ∈ 𝑤 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ∈ ℝ ) |
102 |
101
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ { ran 𝑄 , ∪ ran 𝐼 } ) ∧ 𝑤 = ran 𝑄 ) → ∀ 𝑠 ∈ 𝑤 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ∈ ℝ ) |
103 |
|
fimaxre3 |
⊢ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑠 ∈ 𝑤 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ∈ ℝ ) → ∃ 𝑧 ∈ ℝ ∀ 𝑠 ∈ 𝑤 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑧 ) |
104 |
90 102 103
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ { ran 𝑄 , ∪ ran 𝐼 } ) ∧ 𝑤 = ran 𝑄 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑠 ∈ 𝑤 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑧 ) |
105 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ { ran 𝑄 , ∪ ran 𝐼 } ) ∧ ¬ 𝑤 = ran 𝑄 ) → 𝜑 ) |
106 |
|
neqne |
⊢ ( ¬ 𝑤 = ran 𝑄 → 𝑤 ≠ ran 𝑄 ) |
107 |
|
elprn1 |
⊢ ( ( 𝑤 ∈ { ran 𝑄 , ∪ ran 𝐼 } ∧ 𝑤 ≠ ran 𝑄 ) → 𝑤 = ∪ ran 𝐼 ) |
108 |
106 107
|
sylan2 |
⊢ ( ( 𝑤 ∈ { ran 𝑄 , ∪ ran 𝐼 } ∧ ¬ 𝑤 = ran 𝑄 ) → 𝑤 = ∪ ran 𝐼 ) |
109 |
108
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ { ran 𝑄 , ∪ ran 𝐼 } ) ∧ ¬ 𝑤 = ran 𝑄 ) → 𝑤 = ∪ ran 𝐼 ) |
110 |
22 23
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑤 = ∪ ran 𝐼 ) → ran 𝐼 ∈ Fin ) |
111 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
112 |
111
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
113 |
4 112
|
fssd |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
114 |
113
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ∪ ran 𝐼 ) ∧ 𝑠 ∈ ∪ ran 𝐼 ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
115 |
76
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ∪ ran 𝐼 ) ∧ 𝑠 ∈ ∪ ran 𝐼 ) → 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) |
116 |
114 115
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ∪ ran 𝐼 ) ∧ 𝑠 ∈ ∪ ran 𝐼 ) → ( 𝐹 ‘ 𝑠 ) ∈ ℂ ) |
117 |
116
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ∪ ran 𝐼 ) ∧ 𝑠 ∈ ∪ ran 𝐼 ) → ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ∈ ℝ ) |
118 |
54 13
|
fnmpti |
⊢ 𝐼 Fn ( 0 ..^ 𝑀 ) |
119 |
|
fvelrnb |
⊢ ( 𝐼 Fn ( 0 ..^ 𝑀 ) → ( 𝑡 ∈ ran 𝐼 ↔ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐼 ‘ 𝑖 ) = 𝑡 ) ) |
120 |
118 119
|
ax-mp |
⊢ ( 𝑡 ∈ ran 𝐼 ↔ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐼 ‘ 𝑖 ) = 𝑡 ) |
121 |
120
|
biimpi |
⊢ ( 𝑡 ∈ ran 𝐼 → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐼 ‘ 𝑖 ) = 𝑡 ) |
122 |
121
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ran 𝐼 ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐼 ‘ 𝑖 ) = 𝑡 ) |
123 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
124 |
|
elfzofz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
125 |
124
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
126 |
123 125
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
127 |
|
fzofzp1 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
128 |
127
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
129 |
123 128
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
130 |
126 129 10 12 11
|
cncfioobd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∃ 𝑏 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) ) ≤ 𝑏 ) |
131 |
|
fvres |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) = ( 𝐹 ‘ 𝑠 ) ) |
132 |
131
|
fveq2d |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) ) = ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ) |
133 |
132
|
breq1d |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) ) ≤ 𝑏 ↔ ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ) ) |
134 |
133
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) ) ≤ 𝑏 ↔ ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ) ) |
135 |
134
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ∀ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) ) ≤ 𝑏 ↔ ∀ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ) ) |
136 |
135
|
rexbidv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ∃ 𝑏 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) ) ≤ 𝑏 ↔ ∃ 𝑏 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ) ) |
137 |
130 136
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∃ 𝑏 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ) |
138 |
137
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼 ‘ 𝑖 ) = 𝑡 ) → ∃ 𝑏 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ) |
139 |
54 57
|
mpan2 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝐼 ‘ 𝑖 ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
140 |
139
|
eqcomd |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( 𝐼 ‘ 𝑖 ) ) |
141 |
140
|
adantr |
⊢ ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼 ‘ 𝑖 ) = 𝑡 ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( 𝐼 ‘ 𝑖 ) ) |
142 |
|
simpr |
⊢ ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼 ‘ 𝑖 ) = 𝑡 ) → ( 𝐼 ‘ 𝑖 ) = 𝑡 ) |
143 |
141 142
|
eqtrd |
⊢ ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼 ‘ 𝑖 ) = 𝑡 ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = 𝑡 ) |
144 |
143
|
raleqdv |
⊢ ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼 ‘ 𝑖 ) = 𝑡 ) → ( ∀ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ↔ ∀ 𝑠 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ) ) |
145 |
144
|
rexbidv |
⊢ ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼 ‘ 𝑖 ) = 𝑡 ) → ( ∃ 𝑏 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ↔ ∃ 𝑏 ∈ ℝ ∀ 𝑠 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ) ) |
146 |
145
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼 ‘ 𝑖 ) = 𝑡 ) → ( ∃ 𝑏 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ↔ ∃ 𝑏 ∈ ℝ ∀ 𝑠 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ) ) |
147 |
138 146
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼 ‘ 𝑖 ) = 𝑡 ) → ∃ 𝑏 ∈ ℝ ∀ 𝑠 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ) |
148 |
147
|
3exp |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( ( 𝐼 ‘ 𝑖 ) = 𝑡 → ∃ 𝑏 ∈ ℝ ∀ 𝑠 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ) ) ) |
149 |
148
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ran 𝐼 ) → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( ( 𝐼 ‘ 𝑖 ) = 𝑡 → ∃ 𝑏 ∈ ℝ ∀ 𝑠 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ) ) ) |
150 |
149
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ran 𝐼 ) → ( ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐼 ‘ 𝑖 ) = 𝑡 → ∃ 𝑏 ∈ ℝ ∀ 𝑠 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ) ) |
151 |
122 150
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ran 𝐼 ) → ∃ 𝑏 ∈ ℝ ∀ 𝑠 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ) |
152 |
151
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ∪ ran 𝐼 ) ∧ 𝑡 ∈ ran 𝐼 ) → ∃ 𝑏 ∈ ℝ ∀ 𝑠 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ) |
153 |
|
eqimss |
⊢ ( 𝑤 = ∪ ran 𝐼 → 𝑤 ⊆ ∪ ran 𝐼 ) |
154 |
153
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 = ∪ ran 𝐼 ) → 𝑤 ⊆ ∪ ran 𝐼 ) |
155 |
110 117 152 154
|
ssfiunibd |
⊢ ( ( 𝜑 ∧ 𝑤 = ∪ ran 𝐼 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑠 ∈ 𝑤 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑧 ) |
156 |
105 109 155
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ { ran 𝑄 , ∪ ran 𝐼 } ) ∧ ¬ 𝑤 = ran 𝑄 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑠 ∈ 𝑤 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑧 ) |
157 |
104 156
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ { ran 𝑄 , ∪ ran 𝐼 } ) → ∃ 𝑧 ∈ ℝ ∀ 𝑠 ∈ 𝑤 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑧 ) |
158 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑡 ∈ ran 𝑄 ) → 𝑀 ∈ ℕ ) |
159 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑡 ∈ ran 𝑄 ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
160 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) |
161 |
7
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = ( 𝑄 ‘ 0 ) ) |
162 |
8
|
eqcomd |
⊢ ( 𝜑 → 𝐵 = ( 𝑄 ‘ 𝑀 ) ) |
163 |
161 162
|
oveq12d |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) = ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) |
164 |
163
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 [,] 𝐵 ) = ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) |
165 |
160 164
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑡 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) |
166 |
165
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑡 ∈ ran 𝑄 ) → 𝑡 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) |
167 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑡 ∈ ran 𝑄 ) → ¬ 𝑡 ∈ ran 𝑄 ) |
168 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ 𝑗 ) ) |
169 |
168
|
breq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝑄 ‘ 𝑘 ) < 𝑡 ↔ ( 𝑄 ‘ 𝑗 ) < 𝑡 ) ) |
170 |
169
|
cbvrabv |
⊢ { 𝑘 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑘 ) < 𝑡 } = { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑗 ) < 𝑡 } |
171 |
170
|
supeq1i |
⊢ sup ( { 𝑘 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑘 ) < 𝑡 } , ℝ , < ) = sup ( { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑗 ) < 𝑡 } , ℝ , < ) |
172 |
158 159 166 167 171
|
fourierdlem25 |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑡 ∈ ran 𝑄 ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
173 |
139
|
eleq2d |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑡 ∈ ( 𝐼 ‘ 𝑖 ) ↔ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
174 |
173
|
rexbiia |
⊢ ( ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑡 ∈ ( 𝐼 ‘ 𝑖 ) ↔ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
175 |
172 174
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑡 ∈ ran 𝑄 ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑡 ∈ ( 𝐼 ‘ 𝑖 ) ) |
176 |
55
|
eqcomi |
⊢ ( 0 ..^ 𝑀 ) = dom 𝐼 |
177 |
176
|
rexeqi |
⊢ ( ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑡 ∈ ( 𝐼 ‘ 𝑖 ) ↔ ∃ 𝑖 ∈ dom 𝐼 𝑡 ∈ ( 𝐼 ‘ 𝑖 ) ) |
178 |
175 177
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑡 ∈ ran 𝑄 ) → ∃ 𝑖 ∈ dom 𝐼 𝑡 ∈ ( 𝐼 ‘ 𝑖 ) ) |
179 |
|
elunirn |
⊢ ( Fun 𝐼 → ( 𝑡 ∈ ∪ ran 𝐼 ↔ ∃ 𝑖 ∈ dom 𝐼 𝑡 ∈ ( 𝐼 ‘ 𝑖 ) ) ) |
180 |
49 179
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑡 ∈ ran 𝑄 ) → ( 𝑡 ∈ ∪ ran 𝐼 ↔ ∃ 𝑖 ∈ dom 𝐼 𝑡 ∈ ( 𝐼 ‘ 𝑖 ) ) ) |
181 |
178 180
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑡 ∈ ran 𝑄 ) → 𝑡 ∈ ∪ ran 𝐼 ) |
182 |
181
|
ex |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ¬ 𝑡 ∈ ran 𝑄 → 𝑡 ∈ ∪ ran 𝐼 ) ) |
183 |
182
|
orrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑡 ∈ ran 𝑄 ∨ 𝑡 ∈ ∪ ran 𝐼 ) ) |
184 |
|
elun |
⊢ ( 𝑡 ∈ ( ran 𝑄 ∪ ∪ ran 𝐼 ) ↔ ( 𝑡 ∈ ran 𝑄 ∨ 𝑡 ∈ ∪ ran 𝐼 ) ) |
185 |
183 184
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑡 ∈ ( ran 𝑄 ∪ ∪ ran 𝐼 ) ) |
186 |
185
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) 𝑡 ∈ ( ran 𝑄 ∪ ∪ ran 𝐼 ) ) |
187 |
|
dfss3 |
⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ( ran 𝑄 ∪ ∪ ran 𝐼 ) ↔ ∀ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) 𝑡 ∈ ( ran 𝑄 ∪ ∪ ran 𝐼 ) ) |
188 |
186 187
|
sylibr |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ( ran 𝑄 ∪ ∪ ran 𝐼 ) ) |
189 |
188 28
|
sseqtrrd |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ∪ { ran 𝑄 , ∪ ran 𝐼 } ) |
190 |
15 83 157 189
|
ssfiunibd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑥 ) |