Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem71.dmf |
⊢ ( 𝜑 → dom 𝐹 ⊆ ℝ ) |
2 |
|
fourierdlem71.f |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ℝ ) |
3 |
|
fourierdlem71.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
4 |
|
fourierdlem71.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
5 |
|
fourierdlem71.altb |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
6 |
|
fourierdlem71.t |
⊢ 𝑇 = ( 𝐵 − 𝐴 ) |
7 |
|
fourierdlem71.7 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
8 |
|
fourierdlem71.q |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
9 |
|
fourierdlem71.q0 |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = 𝐴 ) |
10 |
|
fourierdlem71.10 |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) = 𝐵 ) |
11 |
|
fourierdlem71.fcn |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
12 |
|
fourierdlem71.r |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
13 |
|
fourierdlem71.l |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
14 |
|
fourierdlem71.xpt |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) ∧ 𝑘 ∈ ℤ ) → ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ dom 𝐹 ) |
15 |
|
fourierdlem71.fxpt |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) ∧ 𝑘 ∈ ℤ ) → ( 𝐹 ‘ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
16 |
|
fourierdlem71.i |
⊢ 𝐼 = ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
17 |
|
fourierdlem71.e |
⊢ 𝐸 = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) |
18 |
|
prfi |
⊢ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ∈ Fin |
19 |
18
|
a1i |
⊢ ( 𝜑 → { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ∈ Fin ) |
20 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) → 𝐹 : dom 𝐹 ⟶ ℝ ) |
21 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) → 𝜑 ) |
22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) → 𝑥 ∈ ∪ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) |
23 |
|
ovex |
⊢ ( 0 ... 𝑀 ) ∈ V |
24 |
23
|
a1i |
⊢ ( 𝜑 → ( 0 ... 𝑀 ) ∈ V ) |
25 |
8 24
|
fexd |
⊢ ( 𝜑 → 𝑄 ∈ V ) |
26 |
|
rnexg |
⊢ ( 𝑄 ∈ V → ran 𝑄 ∈ V ) |
27 |
|
inex1g |
⊢ ( ran 𝑄 ∈ V → ( ran 𝑄 ∩ dom 𝐹 ) ∈ V ) |
28 |
25 26 27
|
3syl |
⊢ ( 𝜑 → ( ran 𝑄 ∩ dom 𝐹 ) ∈ V ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) → ( ran 𝑄 ∩ dom 𝐹 ) ∈ V ) |
30 |
|
ovex |
⊢ ( 0 ..^ 𝑀 ) ∈ V |
31 |
30
|
mptex |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ V |
32 |
16 31
|
eqeltri |
⊢ 𝐼 ∈ V |
33 |
32
|
rnex |
⊢ ran 𝐼 ∈ V |
34 |
33
|
a1i |
⊢ ( 𝜑 → ran 𝐼 ∈ V ) |
35 |
34
|
uniexd |
⊢ ( 𝜑 → ∪ ran 𝐼 ∈ V ) |
36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) → ∪ ran 𝐼 ∈ V ) |
37 |
|
uniprg |
⊢ ( ( ( ran 𝑄 ∩ dom 𝐹 ) ∈ V ∧ ∪ ran 𝐼 ∈ V ) → ∪ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } = ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) |
38 |
29 36 37
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) → ∪ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } = ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) |
39 |
22 38
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) → 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) |
40 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) → 𝑥 ∈ dom 𝐹 ) |
41 |
40
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) ∧ 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝑥 ∈ dom 𝐹 ) |
42 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) ∧ ¬ 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝜑 ) |
43 |
|
elunnel1 |
⊢ ( ( 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ∧ ¬ 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝑥 ∈ ∪ ran 𝐼 ) |
44 |
43
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) ∧ ¬ 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝑥 ∈ ∪ ran 𝐼 ) |
45 |
16
|
funmpt2 |
⊢ Fun 𝐼 |
46 |
|
elunirn |
⊢ ( Fun 𝐼 → ( 𝑥 ∈ ∪ ran 𝐼 ↔ ∃ 𝑖 ∈ dom 𝐼 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) ) |
47 |
45 46
|
ax-mp |
⊢ ( 𝑥 ∈ ∪ ran 𝐼 ↔ ∃ 𝑖 ∈ dom 𝐼 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) |
48 |
47
|
biimpi |
⊢ ( 𝑥 ∈ ∪ ran 𝐼 → ∃ 𝑖 ∈ dom 𝐼 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) |
49 |
48
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ran 𝐼 ) → ∃ 𝑖 ∈ dom 𝐼 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) |
50 |
|
id |
⊢ ( 𝑖 ∈ dom 𝐼 → 𝑖 ∈ dom 𝐼 ) |
51 |
|
ovex |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∈ V |
52 |
51 16
|
dmmpti |
⊢ dom 𝐼 = ( 0 ..^ 𝑀 ) |
53 |
50 52
|
eleqtrdi |
⊢ ( 𝑖 ∈ dom 𝐼 → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
54 |
53
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
55 |
51
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∈ V ) |
56 |
16
|
fvmpt2 |
⊢ ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∈ V ) → ( 𝐼 ‘ 𝑖 ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
57 |
54 55 56
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑖 ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
58 |
|
cncff |
⊢ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
59 |
|
fdm |
⊢ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ → dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
60 |
11 58 59
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
61 |
53 60
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ) → dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
62 |
|
ssdmres |
⊢ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom 𝐹 ↔ dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
63 |
61 62
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom 𝐹 ) |
64 |
57 63
|
eqsstrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑖 ) ⊆ dom 𝐹 ) |
65 |
64
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ∧ 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) → ( 𝐼 ‘ 𝑖 ) ⊆ dom 𝐹 ) |
66 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ∧ 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) → 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) |
67 |
65 66
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ∧ 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) → 𝑥 ∈ dom 𝐹 ) |
68 |
67
|
3exp |
⊢ ( 𝜑 → ( 𝑖 ∈ dom 𝐼 → ( 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) → 𝑥 ∈ dom 𝐹 ) ) ) |
69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ran 𝐼 ) → ( 𝑖 ∈ dom 𝐼 → ( 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) → 𝑥 ∈ dom 𝐹 ) ) ) |
70 |
69
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ran 𝐼 ) → ( ∃ 𝑖 ∈ dom 𝐼 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) → 𝑥 ∈ dom 𝐹 ) ) |
71 |
49 70
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ran 𝐼 ) → 𝑥 ∈ dom 𝐹 ) |
72 |
42 44 71
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) ∧ ¬ 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝑥 ∈ dom 𝐹 ) |
73 |
41 72
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) → 𝑥 ∈ dom 𝐹 ) |
74 |
21 39 73
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) → 𝑥 ∈ dom 𝐹 ) |
75 |
20 74
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
76 |
75
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
77 |
76
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
78 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) |
79 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝑀 ) ∈ Fin ) |
80 |
|
rnffi |
⊢ ( ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ∧ ( 0 ... 𝑀 ) ∈ Fin ) → ran 𝑄 ∈ Fin ) |
81 |
8 79 80
|
syl2anc |
⊢ ( 𝜑 → ran 𝑄 ∈ Fin ) |
82 |
|
infi |
⊢ ( ran 𝑄 ∈ Fin → ( ran 𝑄 ∩ dom 𝐹 ) ∈ Fin ) |
83 |
81 82
|
syl |
⊢ ( 𝜑 → ( ran 𝑄 ∩ dom 𝐹 ) ∈ Fin ) |
84 |
83
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) → ( ran 𝑄 ∩ dom 𝐹 ) ∈ Fin ) |
85 |
78 84
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝑤 ∈ Fin ) |
86 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) ∧ 𝑥 ∈ 𝑤 ) → 𝜑 ) |
87 |
|
simpr |
⊢ ( ( 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ∧ 𝑥 ∈ 𝑤 ) → 𝑥 ∈ 𝑤 ) |
88 |
|
simpl |
⊢ ( ( 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ∧ 𝑥 ∈ 𝑤 ) → 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) |
89 |
87 88
|
eleqtrd |
⊢ ( ( 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ∧ 𝑥 ∈ 𝑤 ) → 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) |
90 |
89
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) ∧ 𝑥 ∈ 𝑤 ) → 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) |
91 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝐹 : dom 𝐹 ⟶ ℝ ) |
92 |
40
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝑥 ∈ dom 𝐹 ) |
93 |
91 92
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
94 |
93
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
95 |
94
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
96 |
86 90 95
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) ∧ 𝑥 ∈ 𝑤 ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
97 |
96
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) → ∀ 𝑥 ∈ 𝑤 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
98 |
|
fimaxre3 |
⊢ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑥 ∈ 𝑤 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝑤 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) |
99 |
85 97 98
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝑤 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) |
100 |
99
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) ∧ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝑤 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) |
101 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) ∧ ¬ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝜑 ) |
102 |
|
neqne |
⊢ ( ¬ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) → 𝑤 ≠ ( ran 𝑄 ∩ dom 𝐹 ) ) |
103 |
|
elprn1 |
⊢ ( ( 𝑤 ∈ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ∧ 𝑤 ≠ ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝑤 = ∪ ran 𝐼 ) |
104 |
102 103
|
sylan2 |
⊢ ( ( 𝑤 ∈ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ∧ ¬ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝑤 = ∪ ran 𝐼 ) |
105 |
104
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) ∧ ¬ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝑤 = ∪ ran 𝐼 ) |
106 |
|
fzofi |
⊢ ( 0 ..^ 𝑀 ) ∈ Fin |
107 |
16
|
rnmptfi |
⊢ ( ( 0 ..^ 𝑀 ) ∈ Fin → ran 𝐼 ∈ Fin ) |
108 |
106 107
|
ax-mp |
⊢ ran 𝐼 ∈ Fin |
109 |
108
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑤 = ∪ ran 𝐼 ) → ran 𝐼 ∈ Fin ) |
110 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ran 𝐼 ) → 𝐹 : dom 𝐹 ⟶ ℝ ) |
111 |
110 71
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ran 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
112 |
111
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ran 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
113 |
112
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ∪ ran 𝐼 ) ∧ 𝑥 ∈ ∪ ran 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
114 |
113
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ∪ ran 𝐼 ) ∧ 𝑥 ∈ ∪ ran 𝐼 ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
115 |
51 16
|
fnmpti |
⊢ 𝐼 Fn ( 0 ..^ 𝑀 ) |
116 |
|
fvelrnb |
⊢ ( 𝐼 Fn ( 0 ..^ 𝑀 ) → ( 𝑡 ∈ ran 𝐼 ↔ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐼 ‘ 𝑖 ) = 𝑡 ) ) |
117 |
115 116
|
ax-mp |
⊢ ( 𝑡 ∈ ran 𝐼 ↔ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐼 ‘ 𝑖 ) = 𝑡 ) |
118 |
117
|
biimpi |
⊢ ( 𝑡 ∈ ran 𝐼 → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐼 ‘ 𝑖 ) = 𝑡 ) |
119 |
118
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ran 𝐼 ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐼 ‘ 𝑖 ) = 𝑡 ) |
120 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
121 |
|
elfzofz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
122 |
121
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
123 |
120 122
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
124 |
|
fzofzp1 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
125 |
124
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
126 |
120 125
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
127 |
123 126 11 13 12
|
cncfioobd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ≤ 𝑏 ) |
128 |
127
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼 ‘ 𝑖 ) = 𝑡 ) → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ≤ 𝑏 ) |
129 |
|
fvres |
⊢ ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
130 |
129
|
fveq2d |
⊢ ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) = ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
131 |
130
|
breq1d |
⊢ ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ≤ 𝑏 ↔ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ) |
132 |
131
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ≤ 𝑏 ↔ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ) |
133 |
132
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ∀ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ≤ 𝑏 ↔ ∀ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ) |
134 |
133
|
rexbidv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ≤ 𝑏 ↔ ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ) |
135 |
134
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼 ‘ 𝑖 ) = 𝑡 ) → ( ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ≤ 𝑏 ↔ ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ) |
136 |
51 56
|
mpan2 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝐼 ‘ 𝑖 ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
137 |
|
id |
⊢ ( ( 𝐼 ‘ 𝑖 ) = 𝑡 → ( 𝐼 ‘ 𝑖 ) = 𝑡 ) |
138 |
136 137
|
sylan9req |
⊢ ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼 ‘ 𝑖 ) = 𝑡 ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = 𝑡 ) |
139 |
138
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼 ‘ 𝑖 ) = 𝑡 ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = 𝑡 ) |
140 |
139
|
raleqdv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼 ‘ 𝑖 ) = 𝑡 ) → ( ∀ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ↔ ∀ 𝑥 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ) |
141 |
140
|
rexbidv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼 ‘ 𝑖 ) = 𝑡 ) → ( ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ↔ ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ) |
142 |
135 141
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼 ‘ 𝑖 ) = 𝑡 ) → ( ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ≤ 𝑏 ↔ ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ) |
143 |
128 142
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼 ‘ 𝑖 ) = 𝑡 ) → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) |
144 |
143
|
3exp |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( ( 𝐼 ‘ 𝑖 ) = 𝑡 → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ) ) |
145 |
144
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ran 𝐼 ) → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( ( 𝐼 ‘ 𝑖 ) = 𝑡 → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ) ) |
146 |
145
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ran 𝐼 ) → ( ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐼 ‘ 𝑖 ) = 𝑡 → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ) |
147 |
119 146
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ran 𝐼 ) → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) |
148 |
147
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ∪ ran 𝐼 ) ∧ 𝑡 ∈ ran 𝐼 ) → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) |
149 |
|
eqimss |
⊢ ( 𝑤 = ∪ ran 𝐼 → 𝑤 ⊆ ∪ ran 𝐼 ) |
150 |
149
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 = ∪ ran 𝐼 ) → 𝑤 ⊆ ∪ ran 𝐼 ) |
151 |
109 114 148 150
|
ssfiunibd |
⊢ ( ( 𝜑 ∧ 𝑤 = ∪ ran 𝐼 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝑤 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) |
152 |
101 105 151
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) ∧ ¬ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝑤 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) |
153 |
100 152
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝑤 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) |
154 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ 𝑥 ∈ ran 𝑄 ) → 𝑥 ∈ ran 𝑄 ) |
155 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) → 𝑥 ∈ dom 𝐹 ) |
156 |
155
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ 𝑥 ∈ ran 𝑄 ) → 𝑥 ∈ dom 𝐹 ) |
157 |
154 156
|
elind |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ 𝑥 ∈ ran 𝑄 ) → 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) |
158 |
|
elun1 |
⊢ ( 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) → 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) |
159 |
157 158
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ 𝑥 ∈ ran 𝑄 ) → 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) |
160 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ ¬ 𝑥 ∈ ran 𝑄 ) → 𝑀 ∈ ℕ ) |
161 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ ¬ 𝑥 ∈ ran 𝑄 ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
162 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
163 |
162
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
164 |
9
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = ( 𝑄 ‘ 0 ) ) |
165 |
164
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) → 𝐴 = ( 𝑄 ‘ 0 ) ) |
166 |
10
|
eqcomd |
⊢ ( 𝜑 → 𝐵 = ( 𝑄 ‘ 𝑀 ) ) |
167 |
166
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) → 𝐵 = ( 𝑄 ‘ 𝑀 ) ) |
168 |
165 167
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) → ( 𝐴 [,] 𝐵 ) = ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) |
169 |
163 168
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) → 𝑥 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) |
170 |
169
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ ¬ 𝑥 ∈ ran 𝑄 ) → 𝑥 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) |
171 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ ¬ 𝑥 ∈ ran 𝑄 ) → ¬ 𝑥 ∈ ran 𝑄 ) |
172 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ 𝑗 ) ) |
173 |
172
|
breq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝑄 ‘ 𝑘 ) < 𝑥 ↔ ( 𝑄 ‘ 𝑗 ) < 𝑥 ) ) |
174 |
173
|
cbvrabv |
⊢ { 𝑘 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑘 ) < 𝑥 } = { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑗 ) < 𝑥 } |
175 |
174
|
supeq1i |
⊢ sup ( { 𝑘 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑘 ) < 𝑥 } , ℝ , < ) = sup ( { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑗 ) < 𝑥 } , ℝ , < ) |
176 |
160 161 170 171 175
|
fourierdlem25 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ ¬ 𝑥 ∈ ran 𝑄 ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
177 |
53
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ dom 𝐼 ∧ 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
178 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ dom 𝐼 ∧ 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) ) → 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) |
179 |
177 136
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ dom 𝐼 ∧ 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) ) → ( 𝐼 ‘ 𝑖 ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
180 |
178 179
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ dom 𝐼 ∧ 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) ) → 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
181 |
177 180
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ dom 𝐼 ∧ 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) ) → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
182 |
|
id |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
183 |
182 52
|
eleqtrrdi |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ dom 𝐼 ) |
184 |
183
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) → 𝑖 ∈ dom 𝐼 ) |
185 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) → 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
186 |
136
|
eqcomd |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( 𝐼 ‘ 𝑖 ) ) |
187 |
186
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( 𝐼 ‘ 𝑖 ) ) |
188 |
185 187
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) → 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) |
189 |
184 188
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) → ( 𝑖 ∈ dom 𝐼 ∧ 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) ) |
190 |
181 189
|
impbida |
⊢ ( 𝜑 → ( ( 𝑖 ∈ dom 𝐼 ∧ 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) ↔ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
191 |
190
|
rexbidv2 |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ dom 𝐼 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ↔ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
192 |
191
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ ¬ 𝑥 ∈ ran 𝑄 ) → ( ∃ 𝑖 ∈ dom 𝐼 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ↔ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
193 |
176 192
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ ¬ 𝑥 ∈ ran 𝑄 ) → ∃ 𝑖 ∈ dom 𝐼 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) |
194 |
193 47
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ ¬ 𝑥 ∈ ran 𝑄 ) → 𝑥 ∈ ∪ ran 𝐼 ) |
195 |
|
elun2 |
⊢ ( 𝑥 ∈ ∪ ran 𝐼 → 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) |
196 |
194 195
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ ¬ 𝑥 ∈ ran 𝑄 ) → 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) |
197 |
159 196
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) → 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) |
198 |
197
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) |
199 |
|
dfss3 |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ⊆ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ↔ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) |
200 |
198 199
|
sylibr |
⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ⊆ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) |
201 |
28 35 37
|
syl2anc |
⊢ ( 𝜑 → ∪ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } = ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) |
202 |
200 201
|
sseqtrrd |
⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ⊆ ∪ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) |
203 |
19 77 153 202
|
ssfiunibd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) |
204 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
205 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 |
206 |
204 205
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) |
207 |
1
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → 𝑥 ∈ ℝ ) |
208 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → 𝐵 ∈ ℝ ) |
209 |
208 207
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐵 − 𝑥 ) ∈ ℝ ) |
210 |
4 3
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
211 |
6 210
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
212 |
211
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → 𝑇 ∈ ℝ ) |
213 |
3 4
|
posdifd |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵 − 𝐴 ) ) ) |
214 |
5 213
|
mpbid |
⊢ ( 𝜑 → 0 < ( 𝐵 − 𝐴 ) ) |
215 |
214 6
|
breqtrrdi |
⊢ ( 𝜑 → 0 < 𝑇 ) |
216 |
215
|
gt0ne0d |
⊢ ( 𝜑 → 𝑇 ≠ 0 ) |
217 |
216
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → 𝑇 ≠ 0 ) |
218 |
209 212 217
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( ( 𝐵 − 𝑥 ) / 𝑇 ) ∈ ℝ ) |
219 |
218
|
flcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) ∈ ℤ ) |
220 |
219
|
zred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) ∈ ℝ ) |
221 |
220 212
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ∈ ℝ ) |
222 |
207 221
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ∈ ℝ ) |
223 |
17
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ∈ ℝ ) → ( 𝐸 ‘ 𝑥 ) = ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) |
224 |
207 222 223
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐸 ‘ 𝑥 ) = ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) |
225 |
224
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ ( 𝐸 ‘ 𝑥 ) ) = ( 𝐹 ‘ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) ) |
226 |
|
fvex |
⊢ ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) ∈ V |
227 |
|
eleq1 |
⊢ ( 𝑘 = ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) → ( 𝑘 ∈ ℤ ↔ ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) ∈ ℤ ) ) |
228 |
227
|
anbi2d |
⊢ ( 𝑘 = ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) → ( ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) ∧ 𝑘 ∈ ℤ ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) ∧ ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) ∈ ℤ ) ) ) |
229 |
|
oveq1 |
⊢ ( 𝑘 = ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) → ( 𝑘 · 𝑇 ) = ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) |
230 |
229
|
oveq2d |
⊢ ( 𝑘 = ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) → ( 𝑥 + ( 𝑘 · 𝑇 ) ) = ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) |
231 |
230
|
fveq2d |
⊢ ( 𝑘 = ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) → ( 𝐹 ‘ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) = ( 𝐹 ‘ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) ) |
232 |
231
|
eqeq1d |
⊢ ( 𝑘 = ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) → ( ( 𝐹 ‘ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) ) |
233 |
228 232
|
imbi12d |
⊢ ( 𝑘 = ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) → ( ( ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) ∧ 𝑘 ∈ ℤ ) → ( 𝐹 ‘ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) ∧ ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) ∈ ℤ ) → ( 𝐹 ‘ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) ) ) |
234 |
226 233 15
|
vtocl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) ∧ ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) ∈ ℤ ) → ( 𝐹 ‘ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
235 |
219 234
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
236 |
225 235
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐸 ‘ 𝑥 ) ) ) |
237 |
236
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝐸 ‘ 𝑥 ) ) ) ) |
238 |
237
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝐸 ‘ 𝑥 ) ) ) ) |
239 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑤 ) ) |
240 |
239
|
fveq2d |
⊢ ( 𝑥 = 𝑤 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) = ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ) |
241 |
240
|
breq1d |
⊢ ( 𝑥 = 𝑤 → ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ↔ ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ≤ 𝑦 ) ) |
242 |
241
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ↔ ∀ 𝑤 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ≤ 𝑦 ) |
243 |
242
|
biimpi |
⊢ ( ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 → ∀ 𝑤 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ≤ 𝑦 ) |
244 |
243
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ∧ 𝑥 ∈ dom 𝐹 ) → ∀ 𝑤 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ≤ 𝑦 ) |
245 |
|
iocssicc |
⊢ ( 𝐴 (,] 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
246 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → 𝐴 ∈ ℝ ) |
247 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → 𝐴 < 𝐵 ) |
248 |
|
id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
249 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 − 𝑥 ) = ( 𝐵 − 𝑦 ) ) |
250 |
249
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐵 − 𝑥 ) / 𝑇 ) = ( ( 𝐵 − 𝑦 ) / 𝑇 ) ) |
251 |
250
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) = ( ⌊ ‘ ( ( 𝐵 − 𝑦 ) / 𝑇 ) ) ) |
252 |
251
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) = ( ( ⌊ ‘ ( ( 𝐵 − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) |
253 |
248 252
|
oveq12d |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) = ( 𝑦 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ) |
254 |
253
|
cbvmptv |
⊢ ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) = ( 𝑦 ∈ ℝ ↦ ( 𝑦 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ) |
255 |
17 254
|
eqtri |
⊢ 𝐸 = ( 𝑦 ∈ ℝ ↦ ( 𝑦 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ) |
256 |
246 208 247 6 255
|
fourierdlem4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → 𝐸 : ℝ ⟶ ( 𝐴 (,] 𝐵 ) ) |
257 |
256 207
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐸 ‘ 𝑥 ) ∈ ( 𝐴 (,] 𝐵 ) ) |
258 |
245 257
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐸 ‘ 𝑥 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
259 |
230
|
eleq1d |
⊢ ( 𝑘 = ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) → ( ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ dom 𝐹 ↔ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ∈ dom 𝐹 ) ) |
260 |
228 259
|
imbi12d |
⊢ ( 𝑘 = ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) → ( ( ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) ∧ 𝑘 ∈ ℤ ) → ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ dom 𝐹 ) ↔ ( ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) ∧ ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) ∈ ℤ ) → ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ∈ dom 𝐹 ) ) ) |
261 |
226 260 14
|
vtocl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) ∧ ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) ∈ ℤ ) → ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ∈ dom 𝐹 ) |
262 |
219 261
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ∈ dom 𝐹 ) |
263 |
224 262
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐸 ‘ 𝑥 ) ∈ dom 𝐹 ) |
264 |
258 263
|
elind |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐸 ‘ 𝑥 ) ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) |
265 |
264
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐸 ‘ 𝑥 ) ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) |
266 |
|
fveq2 |
⊢ ( 𝑤 = ( 𝐸 ‘ 𝑥 ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝐸 ‘ 𝑥 ) ) ) |
267 |
266
|
fveq2d |
⊢ ( 𝑤 = ( 𝐸 ‘ 𝑥 ) → ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝐸 ‘ 𝑥 ) ) ) ) |
268 |
267
|
breq1d |
⊢ ( 𝑤 = ( 𝐸 ‘ 𝑥 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ≤ 𝑦 ↔ ( abs ‘ ( 𝐹 ‘ ( 𝐸 ‘ 𝑥 ) ) ) ≤ 𝑦 ) ) |
269 |
268
|
rspccva |
⊢ ( ( ∀ 𝑤 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ≤ 𝑦 ∧ ( 𝐸 ‘ 𝑥 ) ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) → ( abs ‘ ( 𝐹 ‘ ( 𝐸 ‘ 𝑥 ) ) ) ≤ 𝑦 ) |
270 |
244 265 269
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( abs ‘ ( 𝐹 ‘ ( 𝐸 ‘ 𝑥 ) ) ) ≤ 𝑦 ) |
271 |
238 270
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) |
272 |
271
|
ex |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) → ( 𝑥 ∈ dom 𝐹 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
273 |
206 272
|
ralrimi |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) → ∀ 𝑥 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) |
274 |
273
|
ex |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 → ∀ 𝑥 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
275 |
274
|
reximdv |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
276 |
203 275
|
mpd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) |