Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem72.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
2 |
|
fourierdlem72.xre |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
3 |
|
fourierdlem72.p |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( π + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
4 |
|
fourierdlem72.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
5 |
|
fourierdlem72.v |
⊢ ( 𝜑 → 𝑉 ∈ ( 𝑃 ‘ 𝑀 ) ) |
6 |
|
fourierdlem72.dvcn |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℝ ) ) |
7 |
|
fourierdlem72.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
8 |
|
fourierdlem72.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
9 |
|
fourierdlem72.altb |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
10 |
|
fourierdlem72.ab |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( - π [,] π ) ) |
11 |
|
fourierdlem72.n0 |
⊢ ( 𝜑 → ¬ 0 ∈ ( 𝐴 [,] 𝐵 ) ) |
12 |
|
fourierdlem72.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
13 |
|
fourierdlem72.q |
⊢ 𝑄 = ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) |
14 |
|
fourierdlem72.u |
⊢ ( 𝜑 → 𝑈 ∈ ( 0 ..^ 𝑀 ) ) |
15 |
|
fourierdlem72.abss |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( ( 𝑄 ‘ 𝑈 ) (,) ( 𝑄 ‘ ( 𝑈 + 1 ) ) ) ) |
16 |
|
fourierdlem72.h |
⊢ 𝐻 = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) / 𝑠 ) ) |
17 |
|
fourierdlem72.k |
⊢ 𝐾 = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝑠 / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) |
18 |
|
fourierdlem72.o |
⊢ 𝑂 = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ) |
19 |
|
ovex |
⊢ ( 𝐴 (,) 𝐵 ) ∈ V |
20 |
19
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ∈ V ) |
21 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐹 : ℝ ⟶ ℝ ) |
22 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑋 ∈ ℝ ) |
23 |
|
elioore |
⊢ ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) → 𝑠 ∈ ℝ ) |
24 |
23
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑠 ∈ ℝ ) |
25 |
22 24
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
26 |
21 25
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℝ ) |
27 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐶 ∈ ℝ ) |
28 |
26 27
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) ∈ ℝ ) |
29 |
|
ioossicc |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
30 |
29
|
sseli |
⊢ ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) → 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) |
31 |
30
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ¬ 𝑠 ≠ 0 ) → 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) |
32 |
|
id |
⊢ ( 𝑠 ≠ 0 → 𝑠 ≠ 0 ) |
33 |
32
|
necon1bi |
⊢ ( ¬ 𝑠 ≠ 0 → 𝑠 = 0 ) |
34 |
33
|
eleq1d |
⊢ ( ¬ 𝑠 ≠ 0 → ( 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ↔ 0 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
35 |
34
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ¬ 𝑠 ≠ 0 ) → ( 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ↔ 0 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
36 |
31 35
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ¬ 𝑠 ≠ 0 ) → 0 ∈ ( 𝐴 [,] 𝐵 ) ) |
37 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ¬ 𝑠 ≠ 0 ) → ¬ 0 ∈ ( 𝐴 [,] 𝐵 ) ) |
38 |
36 37
|
condan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑠 ≠ 0 ) |
39 |
28 24 38
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) / 𝑠 ) ∈ ℝ ) |
40 |
39 16
|
fmptd |
⊢ ( 𝜑 → 𝐻 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
41 |
40
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐻 ‘ 𝑠 ) ∈ ℝ ) |
42 |
|
2re |
⊢ 2 ∈ ℝ |
43 |
42
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 2 ∈ ℝ ) |
44 |
24
|
rehalfcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑠 / 2 ) ∈ ℝ ) |
45 |
44
|
resincld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( sin ‘ ( 𝑠 / 2 ) ) ∈ ℝ ) |
46 |
43 45
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ∈ ℝ ) |
47 |
|
2cnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 2 ∈ ℂ ) |
48 |
24
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑠 ∈ ℂ ) |
49 |
48
|
halfcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑠 / 2 ) ∈ ℂ ) |
50 |
49
|
sincld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( sin ‘ ( 𝑠 / 2 ) ) ∈ ℂ ) |
51 |
|
2ne0 |
⊢ 2 ≠ 0 |
52 |
51
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 2 ≠ 0 ) |
53 |
10
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑠 ∈ ( - π [,] π ) ) |
54 |
|
fourierdlem44 |
⊢ ( ( 𝑠 ∈ ( - π [,] π ) ∧ 𝑠 ≠ 0 ) → ( sin ‘ ( 𝑠 / 2 ) ) ≠ 0 ) |
55 |
53 38 54
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( sin ‘ ( 𝑠 / 2 ) ) ≠ 0 ) |
56 |
47 50 52 55
|
mulne0d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ≠ 0 ) |
57 |
24 46 56
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑠 / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ∈ ℝ ) |
58 |
57 17
|
fmptd |
⊢ ( 𝜑 → 𝐾 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
59 |
58
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐾 ‘ 𝑠 ) ∈ ℝ ) |
60 |
40
|
feqmptd |
⊢ ( 𝜑 → 𝐻 = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐻 ‘ 𝑠 ) ) ) |
61 |
58
|
feqmptd |
⊢ ( 𝜑 → 𝐾 = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐾 ‘ 𝑠 ) ) ) |
62 |
20 41 59 60 61
|
offval2 |
⊢ ( 𝜑 → ( 𝐻 ∘f · 𝐾 ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ) ) |
63 |
18 62
|
eqtr4id |
⊢ ( 𝜑 → 𝑂 = ( 𝐻 ∘f · 𝐾 ) ) |
64 |
63
|
oveq2d |
⊢ ( 𝜑 → ( ℝ D 𝑂 ) = ( ℝ D ( 𝐻 ∘f · 𝐾 ) ) ) |
65 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
66 |
65
|
a1i |
⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
67 |
26
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℂ ) |
68 |
12
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐶 ∈ ℂ ) |
70 |
67 69
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) ∈ ℂ ) |
71 |
|
ioossre |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
72 |
71
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
73 |
72
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑠 ∈ ℝ ) |
74 |
73
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑠 ∈ ℂ ) |
75 |
70 74 38
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) / 𝑠 ) ∈ ℂ ) |
76 |
75 16
|
fmptd |
⊢ ( 𝜑 → 𝐻 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
77 |
74
|
halfcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑠 / 2 ) ∈ ℂ ) |
78 |
77
|
sincld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( sin ‘ ( 𝑠 / 2 ) ) ∈ ℂ ) |
79 |
47 78
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ∈ ℂ ) |
80 |
74 79 56
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑠 / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ∈ ℂ ) |
81 |
80 17
|
fmptd |
⊢ ( 𝜑 → 𝐾 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
82 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
83 |
82
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
84 |
|
ssid |
⊢ ℂ ⊆ ℂ |
85 |
84
|
a1i |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
86 |
|
cncfss |
⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ⊆ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
87 |
83 85 86
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ⊆ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
88 |
38
|
nelrdva |
⊢ ( 𝜑 → ¬ 0 ∈ ( 𝐴 (,) 𝐵 ) ) |
89 |
1 83
|
fssd |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℂ ) |
90 |
|
ssid |
⊢ ℝ ⊆ ℝ |
91 |
90
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℝ ) |
92 |
|
ioossre |
⊢ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ⊆ ℝ |
93 |
92
|
a1i |
⊢ ( 𝜑 → ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ⊆ ℝ ) |
94 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
95 |
94
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
96 |
94 95
|
dvres |
⊢ ( ( ( ℝ ⊆ ℂ ∧ 𝐹 : ℝ ⟶ ℂ ) ∧ ( ℝ ⊆ ℝ ∧ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ⊆ ℝ ) ) → ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) ) |
97 |
83 89 91 93 96
|
syl22anc |
⊢ ( 𝜑 → ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) ) |
98 |
|
ioontr |
⊢ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) = ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) |
99 |
98
|
reseq2i |
⊢ ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) |
100 |
97 99
|
eqtrdi |
⊢ ( 𝜑 → ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) |
101 |
3
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑉 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑉 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑉 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑉 ‘ 𝑀 ) = ( π + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
102 |
4 101
|
syl |
⊢ ( 𝜑 → ( 𝑉 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑉 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑉 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑉 ‘ 𝑀 ) = ( π + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
103 |
5 102
|
mpbid |
⊢ ( 𝜑 → ( 𝑉 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑉 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑉 ‘ 𝑀 ) = ( π + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) |
104 |
103
|
simpld |
⊢ ( 𝜑 → 𝑉 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
105 |
|
elmapi |
⊢ ( 𝑉 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) → 𝑉 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
106 |
104 105
|
syl |
⊢ ( 𝜑 → 𝑉 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
107 |
|
elfzofz |
⊢ ( 𝑈 ∈ ( 0 ..^ 𝑀 ) → 𝑈 ∈ ( 0 ... 𝑀 ) ) |
108 |
14 107
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ ( 0 ... 𝑀 ) ) |
109 |
106 108
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝑈 ) ∈ ℝ ) |
110 |
109
|
rexrd |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝑈 ) ∈ ℝ* ) |
111 |
|
fzofzp1 |
⊢ ( 𝑈 ∈ ( 0 ..^ 𝑀 ) → ( 𝑈 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
112 |
14 111
|
syl |
⊢ ( 𝜑 → ( 𝑈 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
113 |
106 112
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑉 ‘ ( 𝑈 + 1 ) ) ∈ ℝ ) |
114 |
113
|
rexrd |
⊢ ( 𝜑 → ( 𝑉 ‘ ( 𝑈 + 1 ) ) ∈ ℝ* ) |
115 |
|
pire |
⊢ π ∈ ℝ |
116 |
115
|
a1i |
⊢ ( 𝜑 → π ∈ ℝ ) |
117 |
116
|
renegcld |
⊢ ( 𝜑 → - π ∈ ℝ ) |
118 |
117 116 2 3 4 5 108 13
|
fourierdlem13 |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑈 ) = ( ( 𝑉 ‘ 𝑈 ) − 𝑋 ) ∧ ( 𝑉 ‘ 𝑈 ) = ( 𝑋 + ( 𝑄 ‘ 𝑈 ) ) ) ) |
119 |
118
|
simprd |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝑈 ) = ( 𝑋 + ( 𝑄 ‘ 𝑈 ) ) ) |
120 |
118
|
simpld |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑈 ) = ( ( 𝑉 ‘ 𝑈 ) − 𝑋 ) ) |
121 |
109 2
|
resubcld |
⊢ ( 𝜑 → ( ( 𝑉 ‘ 𝑈 ) − 𝑋 ) ∈ ℝ ) |
122 |
120 121
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑈 ) ∈ ℝ ) |
123 |
117 116 2 3 4 5 112 13
|
fourierdlem13 |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑈 + 1 ) ) = ( ( 𝑉 ‘ ( 𝑈 + 1 ) ) − 𝑋 ) ∧ ( 𝑉 ‘ ( 𝑈 + 1 ) ) = ( 𝑋 + ( 𝑄 ‘ ( 𝑈 + 1 ) ) ) ) ) |
124 |
123
|
simpld |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑈 + 1 ) ) = ( ( 𝑉 ‘ ( 𝑈 + 1 ) ) − 𝑋 ) ) |
125 |
113 2
|
resubcld |
⊢ ( 𝜑 → ( ( 𝑉 ‘ ( 𝑈 + 1 ) ) − 𝑋 ) ∈ ℝ ) |
126 |
124 125
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑈 + 1 ) ) ∈ ℝ ) |
127 |
122 126 7 8 9 15
|
fourierdlem10 |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑈 ) ≤ 𝐴 ∧ 𝐵 ≤ ( 𝑄 ‘ ( 𝑈 + 1 ) ) ) ) |
128 |
127
|
simpld |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑈 ) ≤ 𝐴 ) |
129 |
122 7 2 128
|
leadd2dd |
⊢ ( 𝜑 → ( 𝑋 + ( 𝑄 ‘ 𝑈 ) ) ≤ ( 𝑋 + 𝐴 ) ) |
130 |
119 129
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝑈 ) ≤ ( 𝑋 + 𝐴 ) ) |
131 |
127
|
simprd |
⊢ ( 𝜑 → 𝐵 ≤ ( 𝑄 ‘ ( 𝑈 + 1 ) ) ) |
132 |
8 126 2 131
|
leadd2dd |
⊢ ( 𝜑 → ( 𝑋 + 𝐵 ) ≤ ( 𝑋 + ( 𝑄 ‘ ( 𝑈 + 1 ) ) ) ) |
133 |
123
|
simprd |
⊢ ( 𝜑 → ( 𝑉 ‘ ( 𝑈 + 1 ) ) = ( 𝑋 + ( 𝑄 ‘ ( 𝑈 + 1 ) ) ) ) |
134 |
132 133
|
breqtrrd |
⊢ ( 𝜑 → ( 𝑋 + 𝐵 ) ≤ ( 𝑉 ‘ ( 𝑈 + 1 ) ) ) |
135 |
|
ioossioo |
⊢ ( ( ( ( 𝑉 ‘ 𝑈 ) ∈ ℝ* ∧ ( 𝑉 ‘ ( 𝑈 + 1 ) ) ∈ ℝ* ) ∧ ( ( 𝑉 ‘ 𝑈 ) ≤ ( 𝑋 + 𝐴 ) ∧ ( 𝑋 + 𝐵 ) ≤ ( 𝑉 ‘ ( 𝑈 + 1 ) ) ) ) → ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ⊆ ( ( 𝑉 ‘ 𝑈 ) (,) ( 𝑉 ‘ ( 𝑈 + 1 ) ) ) ) |
136 |
110 114 130 134 135
|
syl22anc |
⊢ ( 𝜑 → ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ⊆ ( ( 𝑉 ‘ 𝑈 ) (,) ( 𝑉 ‘ ( 𝑈 + 1 ) ) ) ) |
137 |
136
|
resabs1d |
⊢ ( 𝜑 → ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑈 ) (,) ( 𝑉 ‘ ( 𝑈 + 1 ) ) ) ) ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) |
138 |
137
|
eqcomd |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) = ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑈 ) (,) ( 𝑉 ‘ ( 𝑈 + 1 ) ) ) ) ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) |
139 |
14
|
ancli |
⊢ ( 𝜑 → ( 𝜑 ∧ 𝑈 ∈ ( 0 ..^ 𝑀 ) ) ) |
140 |
|
eleq1 |
⊢ ( 𝑖 = 𝑈 → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↔ 𝑈 ∈ ( 0 ..^ 𝑀 ) ) ) |
141 |
140
|
anbi2d |
⊢ ( 𝑖 = 𝑈 → ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ↔ ( 𝜑 ∧ 𝑈 ∈ ( 0 ..^ 𝑀 ) ) ) ) |
142 |
|
fveq2 |
⊢ ( 𝑖 = 𝑈 → ( 𝑉 ‘ 𝑖 ) = ( 𝑉 ‘ 𝑈 ) ) |
143 |
|
oveq1 |
⊢ ( 𝑖 = 𝑈 → ( 𝑖 + 1 ) = ( 𝑈 + 1 ) ) |
144 |
143
|
fveq2d |
⊢ ( 𝑖 = 𝑈 → ( 𝑉 ‘ ( 𝑖 + 1 ) ) = ( 𝑉 ‘ ( 𝑈 + 1 ) ) ) |
145 |
142 144
|
oveq12d |
⊢ ( 𝑖 = 𝑈 → ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑉 ‘ 𝑈 ) (,) ( 𝑉 ‘ ( 𝑈 + 1 ) ) ) ) |
146 |
145
|
reseq2d |
⊢ ( 𝑖 = 𝑈 → ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑈 ) (,) ( 𝑉 ‘ ( 𝑈 + 1 ) ) ) ) ) |
147 |
145
|
oveq1d |
⊢ ( 𝑖 = 𝑈 → ( ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℝ ) = ( ( ( 𝑉 ‘ 𝑈 ) (,) ( 𝑉 ‘ ( 𝑈 + 1 ) ) ) –cn→ ℝ ) ) |
148 |
146 147
|
eleq12d |
⊢ ( 𝑖 = 𝑈 → ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℝ ) ↔ ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑈 ) (,) ( 𝑉 ‘ ( 𝑈 + 1 ) ) ) ) ∈ ( ( ( 𝑉 ‘ 𝑈 ) (,) ( 𝑉 ‘ ( 𝑈 + 1 ) ) ) –cn→ ℝ ) ) ) |
149 |
141 148
|
imbi12d |
⊢ ( 𝑖 = 𝑈 → ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℝ ) ) ↔ ( ( 𝜑 ∧ 𝑈 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑈 ) (,) ( 𝑉 ‘ ( 𝑈 + 1 ) ) ) ) ∈ ( ( ( 𝑉 ‘ 𝑈 ) (,) ( 𝑉 ‘ ( 𝑈 + 1 ) ) ) –cn→ ℝ ) ) ) ) |
150 |
149 6
|
vtoclg |
⊢ ( 𝑈 ∈ ( 0 ..^ 𝑀 ) → ( ( 𝜑 ∧ 𝑈 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑈 ) (,) ( 𝑉 ‘ ( 𝑈 + 1 ) ) ) ) ∈ ( ( ( 𝑉 ‘ 𝑈 ) (,) ( 𝑉 ‘ ( 𝑈 + 1 ) ) ) –cn→ ℝ ) ) ) |
151 |
14 139 150
|
sylc |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑈 ) (,) ( 𝑉 ‘ ( 𝑈 + 1 ) ) ) ) ∈ ( ( ( 𝑉 ‘ 𝑈 ) (,) ( 𝑉 ‘ ( 𝑈 + 1 ) ) ) –cn→ ℝ ) ) |
152 |
|
rescncf |
⊢ ( ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ⊆ ( ( 𝑉 ‘ 𝑈 ) (,) ( 𝑉 ‘ ( 𝑈 + 1 ) ) ) → ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑈 ) (,) ( 𝑉 ‘ ( 𝑈 + 1 ) ) ) ) ∈ ( ( ( 𝑉 ‘ 𝑈 ) (,) ( 𝑉 ‘ ( 𝑈 + 1 ) ) ) –cn→ ℝ ) → ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑈 ) (,) ( 𝑉 ‘ ( 𝑈 + 1 ) ) ) ) ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ∈ ( ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) –cn→ ℝ ) ) ) |
153 |
136 151 152
|
sylc |
⊢ ( 𝜑 → ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑈 ) (,) ( 𝑉 ‘ ( 𝑈 + 1 ) ) ) ) ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ∈ ( ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) –cn→ ℝ ) ) |
154 |
138 153
|
eqeltrd |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ∈ ( ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) –cn→ ℝ ) ) |
155 |
100 154
|
eqeltrd |
⊢ ( 𝜑 → ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) ∈ ( ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) –cn→ ℝ ) ) |
156 |
1 2 7 8 88 155 12 16
|
fourierdlem59 |
⊢ ( 𝜑 → ( ℝ D 𝐻 ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) |
157 |
87 156
|
sseldd |
⊢ ( 𝜑 → ( ℝ D 𝐻 ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
158 |
|
iooretop |
⊢ ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) |
159 |
158
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) ) |
160 |
17 10 88 159
|
fourierdlem58 |
⊢ ( 𝜑 → ( ℝ D 𝐾 ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) |
161 |
87 160
|
sseldd |
⊢ ( 𝜑 → ( ℝ D 𝐾 ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
162 |
66 76 81 157 161
|
dvmulcncf |
⊢ ( 𝜑 → ( ℝ D ( 𝐻 ∘f · 𝐾 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
163 |
64 162
|
eqeltrd |
⊢ ( 𝜑 → ( ℝ D 𝑂 ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |