Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem75.xre |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
2 |
|
fourierdlem75.p |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( π + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
3 |
|
fourierdlem75.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
4 |
|
fourierdlem75.x |
⊢ ( 𝜑 → 𝑋 ∈ ran 𝑉 ) |
5 |
|
fourierdlem75.y |
⊢ ( 𝜑 → 𝑌 ∈ ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ) |
6 |
|
fourierdlem75.w |
⊢ ( 𝜑 → 𝑊 ∈ ℝ ) |
7 |
|
fourierdlem75.h |
⊢ 𝐻 = ( 𝑠 ∈ ( - π [,] π ) ↦ if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) ) |
8 |
|
fourierdlem75.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
9 |
|
fourierdlem75.v |
⊢ ( 𝜑 → 𝑉 ∈ ( 𝑃 ‘ 𝑀 ) ) |
10 |
|
fourierdlem75.r |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑉 ‘ 𝑖 ) ) ) |
11 |
|
fourierdlem75.q |
⊢ 𝑄 = ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) |
12 |
|
fourierdlem75.o |
⊢ 𝑂 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = - π ∧ ( 𝑝 ‘ 𝑚 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
13 |
|
fourierdlem75.g |
⊢ 𝐺 = ( ℝ D 𝐹 ) |
14 |
|
fourierdlem75.gcn |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐺 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
15 |
|
fourierdlem75.e |
⊢ ( 𝜑 → 𝐸 ∈ ( ( 𝐺 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ) |
16 |
|
fourierdlem75.a |
⊢ 𝐴 = if ( ( 𝑉 ‘ 𝑖 ) = 𝑋 , 𝐸 , ( ( 𝑅 − if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) ) / ( 𝑄 ‘ 𝑖 ) ) ) |
17 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → 𝑋 ∈ ℝ ) |
18 |
2
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑉 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑉 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑉 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑉 ‘ 𝑀 ) = ( π + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
19 |
8 18
|
syl |
⊢ ( 𝜑 → ( 𝑉 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑉 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑉 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑉 ‘ 𝑀 ) = ( π + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
20 |
9 19
|
mpbid |
⊢ ( 𝜑 → ( 𝑉 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑉 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑉 ‘ 𝑀 ) = ( π + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) |
21 |
20
|
simpld |
⊢ ( 𝜑 → 𝑉 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
22 |
|
elmapi |
⊢ ( 𝑉 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) → 𝑉 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
23 |
21 22
|
syl |
⊢ ( 𝜑 → 𝑉 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑉 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
25 |
|
fzofzp1 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
26 |
25
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
27 |
24 26
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
28 |
27
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → ( 𝑉 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
29 |
|
eqcom |
⊢ ( ( 𝑉 ‘ 𝑖 ) = 𝑋 ↔ 𝑋 = ( 𝑉 ‘ 𝑖 ) ) |
30 |
29
|
biimpi |
⊢ ( ( 𝑉 ‘ 𝑖 ) = 𝑋 → 𝑋 = ( 𝑉 ‘ 𝑖 ) ) |
31 |
30
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → 𝑋 = ( 𝑉 ‘ 𝑖 ) ) |
32 |
20
|
simprrd |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
33 |
32
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
34 |
33
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
35 |
31 34
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → 𝑋 < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
36 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐹 : ℝ ⟶ ℝ ) |
37 |
|
ioossre |
⊢ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ |
38 |
37
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
39 |
36 38
|
fssresd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) : ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℝ ) |
40 |
39
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) : ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℝ ) |
41 |
|
limcresi |
⊢ ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ⊆ ( ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑋 ) |
42 |
41 5
|
sselid |
⊢ ( 𝜑 → 𝑌 ∈ ( ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑋 ) ) |
43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑌 ∈ ( ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑋 ) ) |
44 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
45 |
44
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → +∞ ∈ ℝ* ) |
46 |
27
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
47 |
27
|
ltpnfd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ ( 𝑖 + 1 ) ) < +∞ ) |
48 |
46 45 47
|
xrltled |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ ( 𝑖 + 1 ) ) ≤ +∞ ) |
49 |
|
iooss2 |
⊢ ( ( +∞ ∈ ℝ* ∧ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ≤ +∞ ) → ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( 𝑋 (,) +∞ ) ) |
50 |
45 48 49
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( 𝑋 (,) +∞ ) ) |
51 |
50
|
resabs1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) |
52 |
51
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑋 ) = ( ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑋 ) ) |
53 |
43 52
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑌 ∈ ( ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑋 ) ) |
54 |
53
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → 𝑌 ∈ ( ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑋 ) ) |
55 |
|
eqid |
⊢ ( ℝ D ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) = ( ℝ D ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) |
56 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
57 |
56
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
58 |
3 57
|
fssd |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℂ ) |
59 |
|
ssid |
⊢ ℝ ⊆ ℝ |
60 |
59
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℝ ) |
61 |
37
|
a1i |
⊢ ( 𝜑 → ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
62 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
63 |
62
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
64 |
62 63
|
dvres |
⊢ ( ( ( ℝ ⊆ ℂ ∧ 𝐹 : ℝ ⟶ ℂ ) ∧ ( ℝ ⊆ ℝ ∧ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) ) → ( ℝ D ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
65 |
57 58 60 61 64
|
syl22anc |
⊢ ( 𝜑 → ( ℝ D ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
66 |
13
|
eqcomi |
⊢ ( ℝ D 𝐹 ) = 𝐺 |
67 |
|
ioontr |
⊢ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
68 |
66 67
|
reseq12i |
⊢ ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) = ( 𝐺 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) |
69 |
65 68
|
eqtrdi |
⊢ ( 𝜑 → ( ℝ D ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) = ( 𝐺 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) |
70 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → ( ℝ D ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) = ( 𝐺 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) |
71 |
70
|
dmeqd |
⊢ ( ( 𝜑 ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → dom ( ℝ D ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) = dom ( 𝐺 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) |
72 |
71
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → dom ( ℝ D ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) = dom ( 𝐺 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) |
73 |
14
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → ( 𝐺 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
74 |
|
oveq1 |
⊢ ( ( 𝑉 ‘ 𝑖 ) = 𝑋 → ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) = ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) |
75 |
74
|
reseq2d |
⊢ ( ( 𝑉 ‘ 𝑖 ) = 𝑋 → ( 𝐺 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝐺 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) |
76 |
75
|
feq1d |
⊢ ( ( 𝑉 ‘ 𝑖 ) = 𝑋 → ( ( 𝐺 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ↔ ( 𝐺 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) ) |
77 |
76
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → ( ( 𝐺 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ↔ ( 𝐺 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) ) |
78 |
73 77
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → ( 𝐺 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
79 |
74
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) = ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) |
80 |
79
|
feq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → ( ( 𝐺 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ↔ ( 𝐺 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) : ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) ) |
81 |
78 80
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → ( 𝐺 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) : ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
82 |
|
fdm |
⊢ ( ( 𝐺 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) : ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ → dom ( 𝐺 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) |
83 |
81 82
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → dom ( 𝐺 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) |
84 |
72 83
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → dom ( ℝ D ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) = ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) |
85 |
|
limcresi |
⊢ ( ( 𝐺 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ⊆ ( ( ( 𝐺 ↾ ( 𝑋 (,) +∞ ) ) ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑋 ) |
86 |
85 15
|
sselid |
⊢ ( 𝜑 → 𝐸 ∈ ( ( ( 𝐺 ↾ ( 𝑋 (,) +∞ ) ) ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑋 ) ) |
87 |
86
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐸 ∈ ( ( ( 𝐺 ↾ ( 𝑋 (,) +∞ ) ) ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑋 ) ) |
88 |
50
|
resabs1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐺 ↾ ( 𝑋 (,) +∞ ) ) ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝐺 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) |
89 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ℝ D ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) = ( 𝐺 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) |
90 |
88 89
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐺 ↾ ( 𝑋 (,) +∞ ) ) ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) = ( ℝ D ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
91 |
90
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐺 ↾ ( 𝑋 (,) +∞ ) ) ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ 𝑋 ) = ( ( ℝ D ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) limℂ 𝑋 ) ) |
92 |
87 91
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐸 ∈ ( ( ℝ D ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) limℂ 𝑋 ) ) |
93 |
92
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → 𝐸 ∈ ( ( ℝ D ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) limℂ 𝑋 ) ) |
94 |
|
eqid |
⊢ ( 𝑠 ∈ ( 0 (,) ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ↦ ( ( ( ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) − 𝑌 ) / 𝑠 ) ) = ( 𝑠 ∈ ( 0 (,) ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ↦ ( ( ( ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) − 𝑌 ) / 𝑠 ) ) |
95 |
|
oveq2 |
⊢ ( 𝑥 = 𝑠 → ( 𝑋 + 𝑥 ) = ( 𝑋 + 𝑠 ) ) |
96 |
95
|
fveq2d |
⊢ ( 𝑥 = 𝑠 → ( ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑥 ) ) = ( ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) ) |
97 |
96
|
oveq1d |
⊢ ( 𝑥 = 𝑠 → ( ( ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑥 ) ) − 𝑌 ) = ( ( ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) − 𝑌 ) ) |
98 |
97
|
cbvmptv |
⊢ ( 𝑥 ∈ ( 0 (,) ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ↦ ( ( ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑥 ) ) − 𝑌 ) ) = ( 𝑠 ∈ ( 0 (,) ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ↦ ( ( ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) − 𝑌 ) ) |
99 |
|
id |
⊢ ( 𝑥 = 𝑠 → 𝑥 = 𝑠 ) |
100 |
99
|
cbvmptv |
⊢ ( 𝑥 ∈ ( 0 (,) ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ↦ 𝑥 ) = ( 𝑠 ∈ ( 0 (,) ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ↦ 𝑠 ) |
101 |
17 28 35 40 54 55 84 93 94 98 100
|
fourierdlem61 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → 𝐸 ∈ ( ( 𝑠 ∈ ( 0 (,) ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ↦ ( ( ( ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) − 𝑌 ) / 𝑠 ) ) limℂ 0 ) ) |
102 |
|
iftrue |
⊢ ( ( 𝑉 ‘ 𝑖 ) = 𝑋 → if ( ( 𝑉 ‘ 𝑖 ) = 𝑋 , 𝐸 , ( ( 𝑅 − if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) ) / ( 𝑄 ‘ 𝑖 ) ) ) = 𝐸 ) |
103 |
16 102
|
syl5eq |
⊢ ( ( 𝑉 ‘ 𝑖 ) = 𝑋 → 𝐴 = 𝐸 ) |
104 |
103
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → 𝐴 = 𝐸 ) |
105 |
7
|
reseq1i |
⊢ ( 𝐻 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑠 ∈ ( - π [,] π ) ↦ if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
106 |
105
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → ( 𝐻 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑠 ∈ ( - π [,] π ) ↦ if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
107 |
|
ioossicc |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
108 |
|
pire |
⊢ π ∈ ℝ |
109 |
108
|
renegcli |
⊢ - π ∈ ℝ |
110 |
109
|
rexri |
⊢ - π ∈ ℝ* |
111 |
110
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → - π ∈ ℝ* ) |
112 |
108
|
rexri |
⊢ π ∈ ℝ* |
113 |
112
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → π ∈ ℝ* ) |
114 |
109
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → - π ∈ ℝ ) |
115 |
108
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → π ∈ ℝ ) |
116 |
109
|
a1i |
⊢ ( 𝜑 → - π ∈ ℝ ) |
117 |
116 1
|
readdcld |
⊢ ( 𝜑 → ( - π + 𝑋 ) ∈ ℝ ) |
118 |
108
|
a1i |
⊢ ( 𝜑 → π ∈ ℝ ) |
119 |
118 1
|
readdcld |
⊢ ( 𝜑 → ( π + 𝑋 ) ∈ ℝ ) |
120 |
117 119
|
iccssred |
⊢ ( 𝜑 → ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ⊆ ℝ ) |
121 |
120
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ⊆ ℝ ) |
122 |
2 8 9
|
fourierdlem15 |
⊢ ( 𝜑 → 𝑉 : ( 0 ... 𝑀 ) ⟶ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ) |
123 |
122
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑉 ‘ 𝑖 ) ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ) |
124 |
121 123
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑉 ‘ 𝑖 ) ∈ ℝ ) |
125 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝑋 ∈ ℝ ) |
126 |
124 125
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ∈ ℝ ) |
127 |
116
|
recnd |
⊢ ( 𝜑 → - π ∈ ℂ ) |
128 |
1
|
recnd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
129 |
127 128
|
pncand |
⊢ ( 𝜑 → ( ( - π + 𝑋 ) − 𝑋 ) = - π ) |
130 |
129
|
eqcomd |
⊢ ( 𝜑 → - π = ( ( - π + 𝑋 ) − 𝑋 ) ) |
131 |
130
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → - π = ( ( - π + 𝑋 ) − 𝑋 ) ) |
132 |
117
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( - π + 𝑋 ) ∈ ℝ ) |
133 |
119
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( π + 𝑋 ) ∈ ℝ ) |
134 |
|
elicc2 |
⊢ ( ( ( - π + 𝑋 ) ∈ ℝ ∧ ( π + 𝑋 ) ∈ ℝ ) → ( ( 𝑉 ‘ 𝑖 ) ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ↔ ( ( 𝑉 ‘ 𝑖 ) ∈ ℝ ∧ ( - π + 𝑋 ) ≤ ( 𝑉 ‘ 𝑖 ) ∧ ( 𝑉 ‘ 𝑖 ) ≤ ( π + 𝑋 ) ) ) ) |
135 |
132 133 134
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑉 ‘ 𝑖 ) ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ↔ ( ( 𝑉 ‘ 𝑖 ) ∈ ℝ ∧ ( - π + 𝑋 ) ≤ ( 𝑉 ‘ 𝑖 ) ∧ ( 𝑉 ‘ 𝑖 ) ≤ ( π + 𝑋 ) ) ) ) |
136 |
123 135
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑉 ‘ 𝑖 ) ∈ ℝ ∧ ( - π + 𝑋 ) ≤ ( 𝑉 ‘ 𝑖 ) ∧ ( 𝑉 ‘ 𝑖 ) ≤ ( π + 𝑋 ) ) ) |
137 |
136
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( - π + 𝑋 ) ≤ ( 𝑉 ‘ 𝑖 ) ) |
138 |
132 124 125 137
|
lesub1dd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( ( - π + 𝑋 ) − 𝑋 ) ≤ ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) |
139 |
131 138
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → - π ≤ ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) |
140 |
136
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑉 ‘ 𝑖 ) ≤ ( π + 𝑋 ) ) |
141 |
124 133 125 140
|
lesub1dd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ≤ ( ( π + 𝑋 ) − 𝑋 ) ) |
142 |
115
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → π ∈ ℂ ) |
143 |
128
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝑋 ∈ ℂ ) |
144 |
142 143
|
pncand |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( ( π + 𝑋 ) − 𝑋 ) = π ) |
145 |
141 144
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ≤ π ) |
146 |
114 115 126 139 145
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ∈ ( - π [,] π ) ) |
147 |
146 11
|
fmptd |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) |
148 |
147
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) |
149 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
150 |
111 113 148 149
|
fourierdlem8 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( - π [,] π ) ) |
151 |
107 150
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( - π [,] π ) ) |
152 |
151
|
resmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑠 ∈ ( - π [,] π ) ↦ if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) ) ) |
153 |
152
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → ( ( 𝑠 ∈ ( - π [,] π ) ↦ if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) ) ) |
154 |
|
elfzofz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
155 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
156 |
11
|
fvmpt2 |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ∈ ( - π [,] π ) ) → ( 𝑄 ‘ 𝑖 ) = ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) |
157 |
155 146 156
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) = ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) |
158 |
157
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → ( 𝑄 ‘ 𝑖 ) = ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) |
159 |
|
oveq1 |
⊢ ( ( 𝑉 ‘ 𝑖 ) = 𝑋 → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) = ( 𝑋 − 𝑋 ) ) |
160 |
159
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) = ( 𝑋 − 𝑋 ) ) |
161 |
128
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → 𝑋 ∈ ℂ ) |
162 |
161
|
subidd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → ( 𝑋 − 𝑋 ) = 0 ) |
163 |
158 160 162
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → ( 𝑄 ‘ 𝑖 ) = 0 ) |
164 |
154 163
|
sylanl2 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → ( 𝑄 ‘ 𝑖 ) = 0 ) |
165 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑉 ‘ 𝑖 ) = ( 𝑉 ‘ 𝑗 ) ) |
166 |
165
|
oveq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) = ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) |
167 |
166
|
cbvmptv |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) |
168 |
11 167
|
eqtri |
⊢ 𝑄 = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) |
169 |
168
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ) |
170 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝑖 + 1 ) → ( 𝑉 ‘ 𝑗 ) = ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
171 |
170
|
oveq1d |
⊢ ( 𝑗 = ( 𝑖 + 1 ) → ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) = ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) |
172 |
171
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 = ( 𝑖 + 1 ) ) → ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) = ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) |
173 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑋 ∈ ℝ ) |
174 |
27 173
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ∈ ℝ ) |
175 |
169 172 26 174
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) |
176 |
175
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) |
177 |
164 176
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( 0 (,) ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) |
178 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑠 = 0 ) → 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
179 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 = 0 ) → 𝑀 ∈ ℕ ) |
180 |
116 118 1 2 12 8 9 11
|
fourierdlem14 |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑂 ‘ 𝑀 ) ) |
181 |
180
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 = 0 ) → 𝑄 ∈ ( 𝑂 ‘ 𝑀 ) ) |
182 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 = 0 ) → 𝑠 = 0 ) |
183 |
|
ffn |
⊢ ( 𝑉 : ( 0 ... 𝑀 ) ⟶ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) → 𝑉 Fn ( 0 ... 𝑀 ) ) |
184 |
|
fvelrnb |
⊢ ( 𝑉 Fn ( 0 ... 𝑀 ) → ( 𝑋 ∈ ran 𝑉 ↔ ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ) |
185 |
122 183 184
|
3syl |
⊢ ( 𝜑 → ( 𝑋 ∈ ran 𝑉 ↔ ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ) |
186 |
4 185
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑉 ‘ 𝑖 ) = 𝑋 ) |
187 |
163
|
ex |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑉 ‘ 𝑖 ) = 𝑋 → ( 𝑄 ‘ 𝑖 ) = 0 ) ) |
188 |
187
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑉 ‘ 𝑖 ) = 𝑋 → ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 ) = 0 ) ) |
189 |
186 188
|
mpd |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 ) = 0 ) |
190 |
126 11
|
fmptd |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
191 |
|
ffn |
⊢ ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ → 𝑄 Fn ( 0 ... 𝑀 ) ) |
192 |
|
fvelrnb |
⊢ ( 𝑄 Fn ( 0 ... 𝑀 ) → ( 0 ∈ ran 𝑄 ↔ ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 ) = 0 ) ) |
193 |
190 191 192
|
3syl |
⊢ ( 𝜑 → ( 0 ∈ ran 𝑄 ↔ ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 ) = 0 ) ) |
194 |
189 193
|
mpbird |
⊢ ( 𝜑 → 0 ∈ ran 𝑄 ) |
195 |
194
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 = 0 ) → 0 ∈ ran 𝑄 ) |
196 |
182 195
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑠 = 0 ) → 𝑠 ∈ ran 𝑄 ) |
197 |
12 179 181 196
|
fourierdlem12 |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 0 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ¬ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
198 |
197
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 = 0 ) → ¬ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
199 |
198
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑠 = 0 ) → ¬ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
200 |
178 199
|
pm2.65da |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ¬ 𝑠 = 0 ) |
201 |
200
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ¬ 𝑠 = 0 ) |
202 |
201
|
iffalsed |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) = ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) |
203 |
164
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → 0 = ( 𝑄 ‘ 𝑖 ) ) |
204 |
203
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 0 = ( 𝑄 ‘ 𝑖 ) ) |
205 |
|
elioo3g |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ( ( ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ∧ 𝑠 ∈ ℝ* ) ∧ ( ( 𝑄 ‘ 𝑖 ) < 𝑠 ∧ 𝑠 < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
206 |
205
|
biimpi |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( ( ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ∧ 𝑠 ∈ ℝ* ) ∧ ( ( 𝑄 ‘ 𝑖 ) < 𝑠 ∧ 𝑠 < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
207 |
206
|
simprld |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑄 ‘ 𝑖 ) < 𝑠 ) |
208 |
207
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) < 𝑠 ) |
209 |
204 208
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 0 < 𝑠 ) |
210 |
209
|
iftrued |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → if ( 0 < 𝑠 , 𝑌 , 𝑊 ) = 𝑌 ) |
211 |
210
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝑌 ) ) |
212 |
211
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) = ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝑌 ) / 𝑠 ) ) |
213 |
1
|
rexrd |
⊢ ( 𝜑 → 𝑋 ∈ ℝ* ) |
214 |
213
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑋 ∈ ℝ* ) |
215 |
46
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑉 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
216 |
173
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑋 ∈ ℝ ) |
217 |
|
elioore |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → 𝑠 ∈ ℝ ) |
218 |
217
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ∈ ℝ ) |
219 |
216 218
|
readdcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
220 |
218 209
|
elrpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ∈ ℝ+ ) |
221 |
216 220
|
ltaddrpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑋 < ( 𝑋 + 𝑠 ) ) |
222 |
217
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ∈ ℝ ) |
223 |
190
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
224 |
223 26
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
225 |
224
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
226 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑋 ∈ ℝ ) |
227 |
206
|
simprrd |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → 𝑠 < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
228 |
227
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
229 |
222 225 226 228
|
ltadd2dd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑠 ) < ( 𝑋 + ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
230 |
175
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑋 + ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( 𝑋 + ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) |
231 |
128
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑋 ∈ ℂ ) |
232 |
27
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ ( 𝑖 + 1 ) ) ∈ ℂ ) |
233 |
231 232
|
pncan3d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑋 + ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) = ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
234 |
230 233
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑋 + ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
235 |
234
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
236 |
229 235
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑠 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
237 |
236
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑠 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
238 |
214 215 219 221 237
|
eliood |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑠 ) ∈ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) |
239 |
|
fvres |
⊢ ( ( 𝑋 + 𝑠 ) ∈ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) |
240 |
238 239
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) |
241 |
240
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) = ( ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) ) |
242 |
241
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝑌 ) = ( ( ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) − 𝑌 ) ) |
243 |
242
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝑌 ) / 𝑠 ) = ( ( ( ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) − 𝑌 ) / 𝑠 ) ) |
244 |
202 212 243
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) = ( ( ( ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) − 𝑌 ) / 𝑠 ) ) |
245 |
177 244
|
mpteq12dva |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) ) = ( 𝑠 ∈ ( 0 (,) ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ↦ ( ( ( ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) − 𝑌 ) / 𝑠 ) ) ) |
246 |
106 153 245
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → ( 𝐻 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑠 ∈ ( 0 (,) ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ↦ ( ( ( ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) − 𝑌 ) / 𝑠 ) ) ) |
247 |
246 164
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → ( ( 𝐻 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝑠 ∈ ( 0 (,) ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ↦ ( ( ( ( 𝐹 ↾ ( 𝑋 (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) − 𝑌 ) / 𝑠 ) ) limℂ 0 ) ) |
248 |
101 104 247
|
3eltr4d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → 𝐴 ∈ ( ( 𝐻 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
249 |
|
eqid |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) ) |
250 |
|
eqid |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ 𝑠 ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ 𝑠 ) |
251 |
|
eqid |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) |
252 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝐹 : ℝ ⟶ ℝ ) |
253 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑋 ∈ ℝ ) |
254 |
217
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ∈ ℝ ) |
255 |
253 254
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
256 |
252 255
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℝ ) |
257 |
256
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℂ ) |
258 |
257
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℂ ) |
259 |
258
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℂ ) |
260 |
|
limccl |
⊢ ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ⊆ ℂ |
261 |
260 5
|
sselid |
⊢ ( 𝜑 → 𝑌 ∈ ℂ ) |
262 |
6
|
recnd |
⊢ ( 𝜑 → 𝑊 ∈ ℂ ) |
263 |
261 262
|
ifcld |
⊢ ( 𝜑 → if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ∈ ℂ ) |
264 |
263
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ∈ ℂ ) |
265 |
264
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ∈ ℂ ) |
266 |
259 265
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) ∈ ℂ ) |
267 |
217
|
recnd |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → 𝑠 ∈ ℂ ) |
268 |
267
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ∈ ℂ ) |
269 |
|
velsn |
⊢ ( 𝑠 ∈ { 0 } ↔ 𝑠 = 0 ) |
270 |
200 269
|
sylnibr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ¬ 𝑠 ∈ { 0 } ) |
271 |
270
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ¬ 𝑠 ∈ { 0 } ) |
272 |
268 271
|
eldifd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ∈ ( ℂ ∖ { 0 } ) ) |
273 |
|
eqid |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) |
274 |
|
eqid |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ 𝑊 ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ 𝑊 ) |
275 |
|
eqid |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝑊 ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝑊 ) ) |
276 |
262
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑊 ∈ ℂ ) |
277 |
|
ioossre |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ |
278 |
277
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
279 |
154 124
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ 𝑖 ) ∈ ℝ ) |
280 |
279
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ 𝑖 ) ∈ ℝ* ) |
281 |
280
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑉 ‘ 𝑖 ) ∈ ℝ* ) |
282 |
46
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑉 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
283 |
255
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
284 |
|
iccssre |
⊢ ( ( - π ∈ ℝ ∧ π ∈ ℝ ) → ( - π [,] π ) ⊆ ℝ ) |
285 |
109 108 284
|
mp2an |
⊢ ( - π [,] π ) ⊆ ℝ |
286 |
285 56
|
sstri |
⊢ ( - π [,] π ) ⊆ ℂ |
287 |
157 146
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ( - π [,] π ) ) |
288 |
154 287
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ( - π [,] π ) ) |
289 |
286 288
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℂ ) |
290 |
231 289
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑋 + ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝑄 ‘ 𝑖 ) + 𝑋 ) ) |
291 |
154
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
292 |
154 126
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ∈ ℝ ) |
293 |
11
|
fvmpt2 |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ∈ ℝ ) → ( 𝑄 ‘ 𝑖 ) = ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) |
294 |
291 292 293
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) = ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) |
295 |
294
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑋 ) = ( ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) + 𝑋 ) ) |
296 |
279
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ 𝑖 ) ∈ ℂ ) |
297 |
296 231
|
npcand |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) + 𝑋 ) = ( 𝑉 ‘ 𝑖 ) ) |
298 |
290 295 297
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ 𝑖 ) = ( 𝑋 + ( 𝑄 ‘ 𝑖 ) ) ) |
299 |
298
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑉 ‘ 𝑖 ) = ( 𝑋 + ( 𝑄 ‘ 𝑖 ) ) ) |
300 |
294 292
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
301 |
300
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
302 |
207
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) < 𝑠 ) |
303 |
301 222 226 302
|
ltadd2dd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + ( 𝑄 ‘ 𝑖 ) ) < ( 𝑋 + 𝑠 ) ) |
304 |
299 303
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑉 ‘ 𝑖 ) < ( 𝑋 + 𝑠 ) ) |
305 |
281 282 283 304 236
|
eliood |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑠 ) ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) |
306 |
|
ioossre |
⊢ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ |
307 |
306
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
308 |
301 302
|
gtned |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ≠ ( 𝑄 ‘ 𝑖 ) ) |
309 |
298
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑉 ‘ 𝑖 ) ) = ( ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑋 + ( 𝑄 ‘ 𝑖 ) ) ) ) |
310 |
10 309
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑋 + ( 𝑄 ‘ 𝑖 ) ) ) ) |
311 |
36 173 278 273 305 307 308 310 289
|
fourierdlem53 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
312 |
|
ioosscn |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ |
313 |
312
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ ) |
314 |
262
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑊 ∈ ℂ ) |
315 |
274 313 314 289
|
constlimc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑊 ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ 𝑊 ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
316 |
273 274 275 258 276 311 315
|
sublimc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑅 − 𝑊 ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝑊 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
317 |
316
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) → ( 𝑅 − 𝑊 ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝑊 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
318 |
|
iftrue |
⊢ ( ( 𝑉 ‘ 𝑖 ) < 𝑋 → if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) = 𝑊 ) |
319 |
318
|
oveq2d |
⊢ ( ( 𝑉 ‘ 𝑖 ) < 𝑋 → ( 𝑅 − if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) ) = ( 𝑅 − 𝑊 ) ) |
320 |
319
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) → ( 𝑅 − if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) ) = ( 𝑅 − 𝑊 ) ) |
321 |
217
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ∈ ℝ ) |
322 |
|
0red |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 0 ∈ ℝ ) |
323 |
224
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
324 |
227
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
325 |
175
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) |
326 |
280
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) ∧ ¬ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ≤ 𝑋 ) → ( 𝑉 ‘ 𝑖 ) ∈ ℝ* ) |
327 |
46
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) ∧ ¬ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ≤ 𝑋 ) → ( 𝑉 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
328 |
173
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) ∧ ¬ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ≤ 𝑋 ) → 𝑋 ∈ ℝ ) |
329 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) ∧ ¬ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ≤ 𝑋 ) → ( 𝑉 ‘ 𝑖 ) < 𝑋 ) |
330 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ≤ 𝑋 ) → ¬ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ≤ 𝑋 ) |
331 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ≤ 𝑋 ) → 𝑋 ∈ ℝ ) |
332 |
27
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ≤ 𝑋 ) → ( 𝑉 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
333 |
331 332
|
ltnled |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ≤ 𝑋 ) → ( 𝑋 < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ↔ ¬ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ≤ 𝑋 ) ) |
334 |
330 333
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ≤ 𝑋 ) → 𝑋 < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
335 |
334
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) ∧ ¬ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ≤ 𝑋 ) → 𝑋 < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
336 |
326 327 328 329 335
|
eliood |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) ∧ ¬ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ≤ 𝑋 ) → 𝑋 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) |
337 |
2 8 9 4
|
fourierdlem12 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ¬ 𝑋 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) |
338 |
337
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) ∧ ¬ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ≤ 𝑋 ) → ¬ 𝑋 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) |
339 |
336 338
|
condan |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) → ( 𝑉 ‘ ( 𝑖 + 1 ) ) ≤ 𝑋 ) |
340 |
27
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) → ( 𝑉 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
341 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) → 𝑋 ∈ ℝ ) |
342 |
340 341
|
suble0d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) → ( ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ≤ 0 ↔ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ≤ 𝑋 ) ) |
343 |
339 342
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) → ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ≤ 0 ) |
344 |
325 343
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ≤ 0 ) |
345 |
344
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ≤ 0 ) |
346 |
321 323 322 324 345
|
ltletrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 < 0 ) |
347 |
321 322 346
|
ltnsymd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ¬ 0 < 𝑠 ) |
348 |
347
|
iffalsed |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → if ( 0 < 𝑠 , 𝑌 , 𝑊 ) = 𝑊 ) |
349 |
348
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝑊 ) ) |
350 |
349
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) → ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝑊 ) ) ) |
351 |
350
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) → ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝑊 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
352 |
317 320 351
|
3eltr4d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) → ( 𝑅 − if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
353 |
352
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ∧ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) → ( 𝑅 − if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
354 |
|
eqid |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ 𝑌 ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ 𝑌 ) |
355 |
|
eqid |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝑌 ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝑌 ) ) |
356 |
261
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑌 ∈ ℂ ) |
357 |
261
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑌 ∈ ℂ ) |
358 |
354 313 357 289
|
constlimc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑌 ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ 𝑌 ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
359 |
273 354 355 258 356 311 358
|
sublimc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑅 − 𝑌 ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝑌 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
360 |
359
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) → ( 𝑅 − 𝑌 ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝑌 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
361 |
|
iffalse |
⊢ ( ¬ ( 𝑉 ‘ 𝑖 ) < 𝑋 → if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) = 𝑌 ) |
362 |
361
|
oveq2d |
⊢ ( ¬ ( 𝑉 ‘ 𝑖 ) < 𝑋 → ( 𝑅 − if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) ) = ( 𝑅 − 𝑌 ) ) |
363 |
362
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) → ( 𝑅 − if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) ) = ( 𝑅 − 𝑌 ) ) |
364 |
|
0red |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 0 ∈ ℝ ) |
365 |
300
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
366 |
217
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ∈ ℝ ) |
367 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) → 𝑋 ∈ ℝ ) |
368 |
279
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) → ( 𝑉 ‘ 𝑖 ) ∈ ℝ ) |
369 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) → ¬ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) |
370 |
367 368 369
|
nltled |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) → 𝑋 ≤ ( 𝑉 ‘ 𝑖 ) ) |
371 |
368 367
|
subge0d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) → ( 0 ≤ ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ↔ 𝑋 ≤ ( 𝑉 ‘ 𝑖 ) ) ) |
372 |
370 371
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) → 0 ≤ ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) |
373 |
294
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) = ( 𝑄 ‘ 𝑖 ) ) |
374 |
373
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) = ( 𝑄 ‘ 𝑖 ) ) |
375 |
372 374
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) → 0 ≤ ( 𝑄 ‘ 𝑖 ) ) |
376 |
375
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 0 ≤ ( 𝑄 ‘ 𝑖 ) ) |
377 |
207
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) < 𝑠 ) |
378 |
364 365 366 376 377
|
lelttrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 0 < 𝑠 ) |
379 |
378
|
iftrued |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → if ( 0 < 𝑠 , 𝑌 , 𝑊 ) = 𝑌 ) |
380 |
379
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝑌 ) ) |
381 |
380
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) → ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝑌 ) ) ) |
382 |
381
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) → ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝑌 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
383 |
360 363 382
|
3eltr4d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) → ( 𝑅 − if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
384 |
383
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) < 𝑋 ) → ( 𝑅 − if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
385 |
353 384
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → ( 𝑅 − if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
386 |
313 250 289
|
idlimc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ 𝑠 ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
387 |
386
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → ( 𝑄 ‘ 𝑖 ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ 𝑠 ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
388 |
294
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → ( 𝑄 ‘ 𝑖 ) = ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) |
389 |
296
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → ( 𝑉 ‘ 𝑖 ) ∈ ℂ ) |
390 |
231
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → 𝑋 ∈ ℂ ) |
391 |
|
neqne |
⊢ ( ¬ ( 𝑉 ‘ 𝑖 ) = 𝑋 → ( 𝑉 ‘ 𝑖 ) ≠ 𝑋 ) |
392 |
391
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → ( 𝑉 ‘ 𝑖 ) ≠ 𝑋 ) |
393 |
389 390 392
|
subne0d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ≠ 0 ) |
394 |
388 393
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → ( 𝑄 ‘ 𝑖 ) ≠ 0 ) |
395 |
200
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ¬ 𝑠 = 0 ) |
396 |
395
|
neqned |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ≠ 0 ) |
397 |
249 250 251 266 272 385 387 394 396
|
divlimc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → ( ( 𝑅 − if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) ) / ( 𝑄 ‘ 𝑖 ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
398 |
|
iffalse |
⊢ ( ¬ ( 𝑉 ‘ 𝑖 ) = 𝑋 → if ( ( 𝑉 ‘ 𝑖 ) = 𝑋 , 𝐸 , ( ( 𝑅 − if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) ) / ( 𝑄 ‘ 𝑖 ) ) ) = ( ( 𝑅 − if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) ) / ( 𝑄 ‘ 𝑖 ) ) ) |
399 |
16 398
|
syl5eq |
⊢ ( ¬ ( 𝑉 ‘ 𝑖 ) = 𝑋 → 𝐴 = ( ( 𝑅 − if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) ) / ( 𝑄 ‘ 𝑖 ) ) ) |
400 |
399
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → 𝐴 = ( ( 𝑅 − if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) ) / ( 𝑄 ‘ 𝑖 ) ) ) |
401 |
|
ioossre |
⊢ ( 𝑋 (,) +∞ ) ⊆ ℝ |
402 |
401
|
a1i |
⊢ ( 𝜑 → ( 𝑋 (,) +∞ ) ⊆ ℝ ) |
403 |
3 402
|
fssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) : ( 𝑋 (,) +∞ ) ⟶ ℝ ) |
404 |
401 57
|
sstrid |
⊢ ( 𝜑 → ( 𝑋 (,) +∞ ) ⊆ ℂ ) |
405 |
44
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
406 |
1
|
ltpnfd |
⊢ ( 𝜑 → 𝑋 < +∞ ) |
407 |
62 405 1 406
|
lptioo1cn |
⊢ ( 𝜑 → 𝑋 ∈ ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑋 (,) +∞ ) ) ) |
408 |
403 404 407 5
|
limcrecl |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
409 |
3 1 408 6 7
|
fourierdlem9 |
⊢ ( 𝜑 → 𝐻 : ( - π [,] π ) ⟶ ℝ ) |
410 |
409
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐻 : ( - π [,] π ) ⟶ ℝ ) |
411 |
410 151
|
feqresmpt |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐻 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐻 ‘ 𝑠 ) ) ) |
412 |
151
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ∈ ( - π [,] π ) ) |
413 |
|
0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 0 ∈ ℂ ) |
414 |
263
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ∈ ℂ ) |
415 |
258 414
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) ∈ ℂ ) |
416 |
267
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ∈ ℂ ) |
417 |
200
|
neqned |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ≠ 0 ) |
418 |
415 416 417
|
divcld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ∈ ℂ ) |
419 |
413 418
|
ifcld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) ∈ ℂ ) |
420 |
7
|
fvmpt2 |
⊢ ( ( 𝑠 ∈ ( - π [,] π ) ∧ if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) ∈ ℂ ) → ( 𝐻 ‘ 𝑠 ) = if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) ) |
421 |
412 419 420
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐻 ‘ 𝑠 ) = if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) ) |
422 |
200
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) = ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) |
423 |
421 422
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐻 ‘ 𝑠 ) = ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) |
424 |
423
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐻 ‘ 𝑠 ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) ) |
425 |
411 424
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐻 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) ) |
426 |
425
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → ( 𝐻 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) ) |
427 |
426
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → ( ( 𝐻 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
428 |
397 400 427
|
3eltr4d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → 𝐴 ∈ ( ( 𝐻 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
429 |
428
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ( 𝑉 ‘ 𝑖 ) = 𝑋 ) → 𝐴 ∈ ( ( 𝐻 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
430 |
248 429
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐴 ∈ ( ( 𝐻 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |