Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem79.t |
⊢ 𝑇 = ( 𝐵 − 𝐴 ) |
2 |
|
fourierdlem79.p |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
3 |
|
fourierdlem79.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
4 |
|
fourierdlem79.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
5 |
|
fourierdlem79.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
6 |
|
fourierdlem79.d |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
7 |
|
fourierdlem79.cltd |
⊢ ( 𝜑 → 𝐶 < 𝐷 ) |
8 |
|
fourierdlem79.o |
⊢ 𝑂 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐶 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
9 |
|
fourierdlem79.h |
⊢ 𝐻 = ( { 𝐶 , 𝐷 } ∪ { 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) |
10 |
|
fourierdlem79.n |
⊢ 𝑁 = ( ( ♯ ‘ 𝐻 ) − 1 ) |
11 |
|
fourierdlem79.s |
⊢ 𝑆 = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ) |
12 |
|
fourierdlem79.e |
⊢ 𝐸 = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) |
13 |
|
fourierdlem79.l |
⊢ 𝐿 = ( 𝑦 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) ) |
14 |
|
fourierdlem79.z |
⊢ 𝑍 = ( ( 𝑆 ‘ 𝑗 ) + if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ) |
15 |
|
fourierdlem79.i |
⊢ 𝐼 = ( 𝑥 ∈ ℝ ↦ sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } , ℝ , < ) ) |
16 |
2
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
17 |
3 16
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
18 |
4 17
|
mpbid |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
19 |
18
|
simpld |
⊢ ( 𝜑 → 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
20 |
|
elmapi |
⊢ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
21 |
19 20
|
syl |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
23 |
2 3 4 1 12 13 15
|
fourierdlem37 |
⊢ ( 𝜑 → ( 𝐼 : ℝ ⟶ ( 0 ..^ 𝑀 ) ∧ ( 𝑥 ∈ ℝ → sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } , ℝ , < ) ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } ) ) ) |
24 |
23
|
simpld |
⊢ ( 𝜑 → 𝐼 : ℝ ⟶ ( 0 ..^ 𝑀 ) ) |
25 |
|
fzossfz |
⊢ ( 0 ..^ 𝑀 ) ⊆ ( 0 ... 𝑀 ) |
26 |
25
|
a1i |
⊢ ( 𝜑 → ( 0 ..^ 𝑀 ) ⊆ ( 0 ... 𝑀 ) ) |
27 |
24 26
|
fssd |
⊢ ( 𝜑 → 𝐼 : ℝ ⟶ ( 0 ... 𝑀 ) ) |
28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐼 : ℝ ⟶ ( 0 ... 𝑀 ) ) |
29 |
1 2 3 4 5 6 7 8 9 10 11
|
fourierdlem54 |
⊢ ( 𝜑 → ( ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ) ∧ 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ) ) |
30 |
29
|
simpld |
⊢ ( 𝜑 → ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ) ) |
31 |
30
|
simprd |
⊢ ( 𝜑 → 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ) |
32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ) |
33 |
30
|
simpld |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑁 ∈ ℕ ) |
35 |
8
|
fourierdlem2 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ↔ ( 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑁 ) ) ∧ ( ( ( 𝑆 ‘ 0 ) = 𝐶 ∧ ( 𝑆 ‘ 𝑁 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
36 |
34 35
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ↔ ( 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑁 ) ) ∧ ( ( ( 𝑆 ‘ 0 ) = 𝐶 ∧ ( 𝑆 ‘ 𝑁 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
37 |
32 36
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑁 ) ) ∧ ( ( ( 𝑆 ‘ 0 ) = 𝐶 ∧ ( 𝑆 ‘ 𝑁 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ) |
38 |
37
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑁 ) ) ) |
39 |
|
elmapi |
⊢ ( 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑁 ) ) → 𝑆 : ( 0 ... 𝑁 ) ⟶ ℝ ) |
40 |
38 39
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑆 : ( 0 ... 𝑁 ) ⟶ ℝ ) |
41 |
|
elfzofz |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑁 ) → 𝑗 ∈ ( 0 ... 𝑁 ) ) |
42 |
41
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑗 ∈ ( 0 ... 𝑁 ) ) |
43 |
40 42
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ 𝑗 ) ∈ ℝ ) |
44 |
28 43
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ∈ ( 0 ... 𝑀 ) ) |
45 |
22 44
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ∈ ℝ ) |
46 |
45
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ∈ ℝ* ) |
47 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐼 : ℝ ⟶ ( 0 ..^ 𝑀 ) ) |
48 |
47 43
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ∈ ( 0 ..^ 𝑀 ) ) |
49 |
|
fzofzp1 |
⊢ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ∈ ( 0 ..^ 𝑀 ) → ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ∈ ( 0 ... 𝑀 ) ) |
50 |
48 49
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ∈ ( 0 ... 𝑀 ) ) |
51 |
22 50
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ∈ ℝ ) |
52 |
51
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ∈ ℝ* ) |
53 |
15
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐼 = ( 𝑥 ∈ ℝ ↦ sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } , ℝ , < ) ) ) |
54 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑆 ‘ 𝑗 ) → ( 𝐸 ‘ 𝑥 ) = ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) |
55 |
54
|
fveq2d |
⊢ ( 𝑥 = ( 𝑆 ‘ 𝑗 ) → ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) = ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) |
56 |
55
|
breq2d |
⊢ ( 𝑥 = ( 𝑆 ‘ 𝑗 ) → ( ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) ↔ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) ) |
57 |
56
|
rabbidv |
⊢ ( 𝑥 = ( 𝑆 ‘ 𝑗 ) → { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } = { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } ) |
58 |
57
|
supeq1d |
⊢ ( 𝑥 = ( 𝑆 ‘ 𝑗 ) → sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } , ℝ , < ) = sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } , ℝ , < ) ) |
59 |
58
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑥 = ( 𝑆 ‘ 𝑗 ) ) → sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } , ℝ , < ) = sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } , ℝ , < ) ) |
60 |
|
ltso |
⊢ < Or ℝ |
61 |
60
|
supex |
⊢ sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } , ℝ , < ) ∈ V |
62 |
61
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } , ℝ , < ) ∈ V ) |
63 |
53 59 43 62
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } , ℝ , < ) ) |
64 |
63
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) = ( 𝑄 ‘ sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } , ℝ , < ) ) ) |
65 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝜑 ) |
66 |
65 43
|
jca |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝜑 ∧ ( 𝑆 ‘ 𝑗 ) ∈ ℝ ) ) |
67 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑆 ‘ 𝑗 ) → ( 𝑥 ∈ ℝ ↔ ( 𝑆 ‘ 𝑗 ) ∈ ℝ ) ) |
68 |
67
|
anbi2d |
⊢ ( 𝑥 = ( 𝑆 ‘ 𝑗 ) → ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ↔ ( 𝜑 ∧ ( 𝑆 ‘ 𝑗 ) ∈ ℝ ) ) ) |
69 |
58 57
|
eleq12d |
⊢ ( 𝑥 = ( 𝑆 ‘ 𝑗 ) → ( sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } , ℝ , < ) ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } ↔ sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } , ℝ , < ) ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } ) ) |
70 |
68 69
|
imbi12d |
⊢ ( 𝑥 = ( 𝑆 ‘ 𝑗 ) → ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } , ℝ , < ) ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } ) ↔ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝑗 ) ∈ ℝ ) → sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } , ℝ , < ) ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } ) ) ) |
71 |
23
|
simprd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ → sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } , ℝ , < ) ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } ) ) |
72 |
71
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } , ℝ , < ) ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } ) |
73 |
70 72
|
vtoclg |
⊢ ( ( 𝑆 ‘ 𝑗 ) ∈ ℝ → ( ( 𝜑 ∧ ( 𝑆 ‘ 𝑗 ) ∈ ℝ ) → sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } , ℝ , < ) ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } ) ) |
74 |
43 66 73
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } , ℝ , < ) ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } ) |
75 |
|
nfrab1 |
⊢ Ⅎ 𝑖 { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } |
76 |
|
nfcv |
⊢ Ⅎ 𝑖 ℝ |
77 |
|
nfcv |
⊢ Ⅎ 𝑖 < |
78 |
75 76 77
|
nfsup |
⊢ Ⅎ 𝑖 sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } , ℝ , < ) |
79 |
|
nfcv |
⊢ Ⅎ 𝑖 ( 0 ..^ 𝑀 ) |
80 |
|
nfcv |
⊢ Ⅎ 𝑖 𝑄 |
81 |
80 78
|
nffv |
⊢ Ⅎ 𝑖 ( 𝑄 ‘ sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } , ℝ , < ) ) |
82 |
|
nfcv |
⊢ Ⅎ 𝑖 ≤ |
83 |
|
nfcv |
⊢ Ⅎ 𝑖 ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) |
84 |
81 82 83
|
nfbr |
⊢ Ⅎ 𝑖 ( 𝑄 ‘ sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } , ℝ , < ) ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) |
85 |
|
fveq2 |
⊢ ( 𝑖 = sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } , ℝ , < ) → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } , ℝ , < ) ) ) |
86 |
85
|
breq1d |
⊢ ( 𝑖 = sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } , ℝ , < ) → ( ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ↔ ( 𝑄 ‘ sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } , ℝ , < ) ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) ) |
87 |
78 79 84 86
|
elrabf |
⊢ ( sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } , ℝ , < ) ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } ↔ ( sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } , ℝ , < ) ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑄 ‘ sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } , ℝ , < ) ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) ) |
88 |
74 87
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } , ℝ , < ) ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑄 ‘ sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } , ℝ , < ) ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) ) |
89 |
88
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑄 ‘ sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } , ℝ , < ) ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) |
90 |
64 89
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) |
91 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → 𝑀 ∈ ℕ ) |
92 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
93 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → 𝐶 ∈ ℝ ) |
94 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → 𝐷 ∈ ℝ ) |
95 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → 𝐶 < 𝐷 ) |
96 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
97 |
3
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
98 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
99 |
|
0le1 |
⊢ 0 ≤ 1 |
100 |
99
|
a1i |
⊢ ( 𝜑 → 0 ≤ 1 ) |
101 |
3
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝑀 ) |
102 |
96 97 98 100 101
|
elfzd |
⊢ ( 𝜑 → 1 ∈ ( 0 ... 𝑀 ) ) |
103 |
102
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → 1 ∈ ( 0 ... 𝑀 ) ) |
104 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → 𝑗 ∈ ( 0 ..^ 𝑁 ) ) |
105 |
|
fzofzp1 |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑁 ) → ( 𝑗 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
106 |
105
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑗 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
107 |
40 106
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
108 |
107 43
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) ∈ ℝ ) |
109 |
108
|
rehalfcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ∈ ℝ ) |
110 |
21 102
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑄 ‘ 1 ) ∈ ℝ ) |
111 |
2 3 4
|
fourierdlem11 |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ) |
112 |
111
|
simp1d |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
113 |
110 112
|
resubcld |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 1 ) − 𝐴 ) ∈ ℝ ) |
114 |
113
|
rehalfcld |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ∈ ℝ ) |
115 |
114
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ∈ ℝ ) |
116 |
109 115
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ∈ ℝ ) |
117 |
43 116
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) + if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ) ∈ ℝ ) |
118 |
14 117
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑍 ∈ ℝ ) |
119 |
|
2re |
⊢ 2 ∈ ℝ |
120 |
119
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 2 ∈ ℝ ) |
121 |
|
elfzoelz |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑁 ) → 𝑗 ∈ ℤ ) |
122 |
121
|
zred |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑁 ) → 𝑗 ∈ ℝ ) |
123 |
122
|
ltp1d |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑁 ) → 𝑗 < ( 𝑗 + 1 ) ) |
124 |
123
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑗 < ( 𝑗 + 1 ) ) |
125 |
29
|
simprd |
⊢ ( 𝜑 → 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ) |
126 |
125
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ) |
127 |
|
isorel |
⊢ ( ( 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ∧ ( 𝑗 ∈ ( 0 ... 𝑁 ) ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑗 < ( 𝑗 + 1 ) ↔ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
128 |
126 42 106 127
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑗 < ( 𝑗 + 1 ) ↔ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
129 |
124 128
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) |
130 |
43 107
|
posdifd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ↔ 0 < ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) ) ) |
131 |
129 130
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 0 < ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) ) |
132 |
|
2pos |
⊢ 0 < 2 |
133 |
132
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 0 < 2 ) |
134 |
108 120 131 133
|
divgt0d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 0 < ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ) |
135 |
109 134
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ∈ ℝ+ ) |
136 |
119
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
137 |
3
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑀 ) |
138 |
|
fzolb |
⊢ ( 0 ∈ ( 0 ..^ 𝑀 ) ↔ ( 0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀 ) ) |
139 |
96 97 137 138
|
syl3anbrc |
⊢ ( 𝜑 → 0 ∈ ( 0 ..^ 𝑀 ) ) |
140 |
|
0re |
⊢ 0 ∈ ℝ |
141 |
|
eleq1 |
⊢ ( 𝑖 = 0 → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↔ 0 ∈ ( 0 ..^ 𝑀 ) ) ) |
142 |
141
|
anbi2d |
⊢ ( 𝑖 = 0 → ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ↔ ( 𝜑 ∧ 0 ∈ ( 0 ..^ 𝑀 ) ) ) ) |
143 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 0 ) ) |
144 |
|
oveq1 |
⊢ ( 𝑖 = 0 → ( 𝑖 + 1 ) = ( 0 + 1 ) ) |
145 |
144
|
fveq2d |
⊢ ( 𝑖 = 0 → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑄 ‘ ( 0 + 1 ) ) ) |
146 |
143 145
|
breq12d |
⊢ ( 𝑖 = 0 → ( ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ↔ ( 𝑄 ‘ 0 ) < ( 𝑄 ‘ ( 0 + 1 ) ) ) ) |
147 |
142 146
|
imbi12d |
⊢ ( 𝑖 = 0 → ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ( ( 𝜑 ∧ 0 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 0 ) < ( 𝑄 ‘ ( 0 + 1 ) ) ) ) ) |
148 |
18
|
simprd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
149 |
148
|
simprd |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
150 |
149
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
151 |
147 150
|
vtoclg |
⊢ ( 0 ∈ ℝ → ( ( 𝜑 ∧ 0 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 0 ) < ( 𝑄 ‘ ( 0 + 1 ) ) ) ) |
152 |
140 151
|
ax-mp |
⊢ ( ( 𝜑 ∧ 0 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 0 ) < ( 𝑄 ‘ ( 0 + 1 ) ) ) |
153 |
139 152
|
mpdan |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) < ( 𝑄 ‘ ( 0 + 1 ) ) ) |
154 |
148
|
simpld |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ) |
155 |
154
|
simpld |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = 𝐴 ) |
156 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
157 |
156
|
fveq2i |
⊢ ( 𝑄 ‘ ( 0 + 1 ) ) = ( 𝑄 ‘ 1 ) |
158 |
157
|
a1i |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 0 + 1 ) ) = ( 𝑄 ‘ 1 ) ) |
159 |
153 155 158
|
3brtr3d |
⊢ ( 𝜑 → 𝐴 < ( 𝑄 ‘ 1 ) ) |
160 |
112 110
|
posdifd |
⊢ ( 𝜑 → ( 𝐴 < ( 𝑄 ‘ 1 ) ↔ 0 < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) ) |
161 |
159 160
|
mpbid |
⊢ ( 𝜑 → 0 < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) |
162 |
132
|
a1i |
⊢ ( 𝜑 → 0 < 2 ) |
163 |
113 136 161 162
|
divgt0d |
⊢ ( 𝜑 → 0 < ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) |
164 |
114 163
|
elrpd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ∈ ℝ+ ) |
165 |
164
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ∈ ℝ+ ) |
166 |
135 165
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ∈ ℝ+ ) |
167 |
43 166
|
ltaddrpd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ 𝑗 ) < ( ( 𝑆 ‘ 𝑗 ) + if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ) ) |
168 |
43 117 167
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ 𝑗 ) ≤ ( ( 𝑆 ‘ 𝑗 ) + if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ) ) |
169 |
168 14
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ 𝑗 ) ≤ 𝑍 ) |
170 |
43 109
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) + ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ) ∈ ℝ ) |
171 |
|
iftrue |
⊢ ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) → if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) = ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ) |
172 |
171
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) = ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ) |
173 |
109
|
leidd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ≤ ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ) |
174 |
173
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ≤ ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ) |
175 |
172 174
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ≤ ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ) |
176 |
|
iffalse |
⊢ ( ¬ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) → if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) = ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) |
177 |
176
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) = ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) |
178 |
113
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → ( ( 𝑄 ‘ 1 ) − 𝐴 ) ∈ ℝ ) |
179 |
108
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) ∈ ℝ ) |
180 |
|
2rp |
⊢ 2 ∈ ℝ+ |
181 |
180
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → 2 ∈ ℝ+ ) |
182 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → ¬ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) |
183 |
178 179 182
|
nltled |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → ( ( 𝑄 ‘ 1 ) − 𝐴 ) ≤ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) ) |
184 |
178 179 181 183
|
lediv1dd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ≤ ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ) |
185 |
177 184
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ≤ ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ) |
186 |
175 185
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ≤ ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ) |
187 |
116 109 43 186
|
leadd2dd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) + if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ) ) |
188 |
43
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ 𝑗 ) ∈ ℂ ) |
189 |
107
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∈ ℂ ) |
190 |
188 189
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) = ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) + ( 𝑆 ‘ 𝑗 ) ) ) |
191 |
190
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝑆 ‘ 𝑗 ) + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 2 ) = ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) + ( 𝑆 ‘ 𝑗 ) ) / 2 ) ) |
192 |
191
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( ( 𝑆 ‘ 𝑗 ) + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 2 ) − ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ) = ( ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) + ( 𝑆 ‘ 𝑗 ) ) / 2 ) − ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ) ) |
193 |
|
halfaddsub |
⊢ ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∈ ℂ ∧ ( 𝑆 ‘ 𝑗 ) ∈ ℂ ) → ( ( ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) + ( 𝑆 ‘ 𝑗 ) ) / 2 ) + ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ) = ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∧ ( ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) + ( 𝑆 ‘ 𝑗 ) ) / 2 ) − ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ) = ( 𝑆 ‘ 𝑗 ) ) ) |
194 |
189 188 193
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) + ( 𝑆 ‘ 𝑗 ) ) / 2 ) + ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ) = ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∧ ( ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) + ( 𝑆 ‘ 𝑗 ) ) / 2 ) − ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ) = ( 𝑆 ‘ 𝑗 ) ) ) |
195 |
194
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) + ( 𝑆 ‘ 𝑗 ) ) / 2 ) − ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ) = ( 𝑆 ‘ 𝑗 ) ) |
196 |
192 195
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( ( 𝑆 ‘ 𝑗 ) + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 2 ) − ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ) = ( 𝑆 ‘ 𝑗 ) ) |
197 |
188 189
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ∈ ℂ ) |
198 |
197
|
halfcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝑆 ‘ 𝑗 ) + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 2 ) ∈ ℂ ) |
199 |
109
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ∈ ℂ ) |
200 |
198 199 188
|
subsub23d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( ( ( 𝑆 ‘ 𝑗 ) + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 2 ) − ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ) = ( 𝑆 ‘ 𝑗 ) ↔ ( ( ( ( 𝑆 ‘ 𝑗 ) + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 2 ) − ( 𝑆 ‘ 𝑗 ) ) = ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ) ) |
201 |
196 200
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( ( 𝑆 ‘ 𝑗 ) + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 2 ) − ( 𝑆 ‘ 𝑗 ) ) = ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ) |
202 |
198 188 199
|
subaddd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( ( ( 𝑆 ‘ 𝑗 ) + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 2 ) − ( 𝑆 ‘ 𝑗 ) ) = ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ↔ ( ( 𝑆 ‘ 𝑗 ) + ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ) = ( ( ( 𝑆 ‘ 𝑗 ) + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 2 ) ) ) |
203 |
201 202
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) + ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ) = ( ( ( 𝑆 ‘ 𝑗 ) + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 2 ) ) |
204 |
|
avglt2 |
⊢ ( ( ( 𝑆 ‘ 𝑗 ) ∈ ℝ ∧ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) → ( ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ↔ ( ( ( 𝑆 ‘ 𝑗 ) + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 2 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
205 |
43 107 204
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ↔ ( ( ( 𝑆 ‘ 𝑗 ) + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 2 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
206 |
129 205
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝑆 ‘ 𝑗 ) + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) / 2 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) |
207 |
203 206
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) + ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) |
208 |
117 170 107 187 207
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) + if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) |
209 |
14 208
|
eqbrtrid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑍 < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) |
210 |
107
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∈ ℝ* ) |
211 |
|
elico2 |
⊢ ( ( ( 𝑆 ‘ 𝑗 ) ∈ ℝ ∧ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∈ ℝ* ) → ( 𝑍 ∈ ( ( 𝑆 ‘ 𝑗 ) [,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ↔ ( 𝑍 ∈ ℝ ∧ ( 𝑆 ‘ 𝑗 ) ≤ 𝑍 ∧ 𝑍 < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
212 |
43 210 211
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑍 ∈ ( ( 𝑆 ‘ 𝑗 ) [,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ↔ ( 𝑍 ∈ ℝ ∧ ( 𝑆 ‘ 𝑗 ) ≤ 𝑍 ∧ 𝑍 < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
213 |
118 169 209 212
|
mpbir3and |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑍 ∈ ( ( 𝑆 ‘ 𝑗 ) [,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
214 |
213
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → 𝑍 ∈ ( ( 𝑆 ‘ 𝑗 ) [,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
215 |
112
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → 𝐴 ∈ ℝ ) |
216 |
111
|
simp2d |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
217 |
216
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → 𝐵 ∈ ℝ ) |
218 |
111
|
simp3d |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
219 |
218
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → 𝐴 < 𝐵 ) |
220 |
43
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝑆 ‘ 𝑗 ) ∈ ℝ ) |
221 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) |
222 |
167 14
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ 𝑗 ) < 𝑍 ) |
223 |
216 112
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
224 |
1 223
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
225 |
224
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑇 ∈ ℝ ) |
226 |
109
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ∈ ℝ ) |
227 |
114
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ∈ ℝ ) |
228 |
108
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) ∈ ℝ ) |
229 |
113
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → ( ( 𝑄 ‘ 1 ) − 𝐴 ) ∈ ℝ ) |
230 |
180
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → 2 ∈ ℝ+ ) |
231 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) |
232 |
228 229 230 231
|
ltdiv1dd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) < ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) |
233 |
226 227 232
|
ltled |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ≤ ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) |
234 |
172 233
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ≤ ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) |
235 |
176
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) = ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) |
236 |
114
|
leidd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ≤ ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) |
237 |
236
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ≤ ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) |
238 |
235 237
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ¬ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ≤ ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) |
239 |
238
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ≤ ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) |
240 |
234 239
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ≤ ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) |
241 |
223
|
rehalfcld |
⊢ ( 𝜑 → ( ( 𝐵 − 𝐴 ) / 2 ) ∈ ℝ ) |
242 |
180
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ+ ) |
243 |
112
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
244 |
216
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
245 |
2 3 4
|
fourierdlem15 |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
246 |
245 102
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑄 ‘ 1 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
247 |
|
iccleub |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝑄 ‘ 1 ) ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑄 ‘ 1 ) ≤ 𝐵 ) |
248 |
243 244 246 247
|
syl3anc |
⊢ ( 𝜑 → ( 𝑄 ‘ 1 ) ≤ 𝐵 ) |
249 |
110 216 112 248
|
lesub1dd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 1 ) − 𝐴 ) ≤ ( 𝐵 − 𝐴 ) ) |
250 |
113 223 242 249
|
lediv1dd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ≤ ( ( 𝐵 − 𝐴 ) / 2 ) ) |
251 |
1
|
eqcomi |
⊢ ( 𝐵 − 𝐴 ) = 𝑇 |
252 |
251
|
oveq1i |
⊢ ( ( 𝐵 − 𝐴 ) / 2 ) = ( 𝑇 / 2 ) |
253 |
112 216
|
posdifd |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵 − 𝐴 ) ) ) |
254 |
218 253
|
mpbid |
⊢ ( 𝜑 → 0 < ( 𝐵 − 𝐴 ) ) |
255 |
254 1
|
breqtrrdi |
⊢ ( 𝜑 → 0 < 𝑇 ) |
256 |
224 255
|
elrpd |
⊢ ( 𝜑 → 𝑇 ∈ ℝ+ ) |
257 |
|
rphalflt |
⊢ ( 𝑇 ∈ ℝ+ → ( 𝑇 / 2 ) < 𝑇 ) |
258 |
256 257
|
syl |
⊢ ( 𝜑 → ( 𝑇 / 2 ) < 𝑇 ) |
259 |
252 258
|
eqbrtrid |
⊢ ( 𝜑 → ( ( 𝐵 − 𝐴 ) / 2 ) < 𝑇 ) |
260 |
114 241 224 250 259
|
lelttrd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) < 𝑇 ) |
261 |
114 224 260
|
ltled |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ≤ 𝑇 ) |
262 |
261
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ≤ 𝑇 ) |
263 |
116 115 225 240 262
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ≤ 𝑇 ) |
264 |
116 225 43 263
|
leadd2dd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) + if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ) ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) |
265 |
14 264
|
eqbrtrid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑍 ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) |
266 |
43
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ 𝑗 ) ∈ ℝ* ) |
267 |
43 225
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ∈ ℝ ) |
268 |
|
elioc2 |
⊢ ( ( ( 𝑆 ‘ 𝑗 ) ∈ ℝ* ∧ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ∈ ℝ ) → ( 𝑍 ∈ ( ( 𝑆 ‘ 𝑗 ) (,] ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) ↔ ( 𝑍 ∈ ℝ ∧ ( 𝑆 ‘ 𝑗 ) < 𝑍 ∧ 𝑍 ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) ) ) |
269 |
266 267 268
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑍 ∈ ( ( 𝑆 ‘ 𝑗 ) (,] ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) ↔ ( 𝑍 ∈ ℝ ∧ ( 𝑆 ‘ 𝑗 ) < 𝑍 ∧ 𝑍 ≤ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) ) ) |
270 |
118 222 265 269
|
mpbir3and |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑍 ∈ ( ( 𝑆 ‘ 𝑗 ) (,] ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) ) |
271 |
270
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → 𝑍 ∈ ( ( 𝑆 ‘ 𝑗 ) (,] ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) ) |
272 |
215 217 219 1 12 220 221 271
|
fourierdlem26 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝐸 ‘ 𝑍 ) = ( 𝐴 + ( 𝑍 − ( 𝑆 ‘ 𝑗 ) ) ) ) |
273 |
14
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑍 = ( ( 𝑆 ‘ 𝑗 ) + if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ) ) |
274 |
273
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑍 − ( 𝑆 ‘ 𝑗 ) ) = ( ( ( 𝑆 ‘ 𝑗 ) + if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ) − ( 𝑆 ‘ 𝑗 ) ) ) |
275 |
274
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐴 + ( 𝑍 − ( 𝑆 ‘ 𝑗 ) ) ) = ( 𝐴 + ( ( ( 𝑆 ‘ 𝑗 ) + if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ) − ( 𝑆 ‘ 𝑗 ) ) ) ) |
276 |
275
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝐴 + ( 𝑍 − ( 𝑆 ‘ 𝑗 ) ) ) = ( 𝐴 + ( ( ( 𝑆 ‘ 𝑗 ) + if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ) − ( 𝑆 ‘ 𝑗 ) ) ) ) |
277 |
116
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ∈ ℂ ) |
278 |
188 277
|
pncan2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝑆 ‘ 𝑗 ) + if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ) − ( 𝑆 ‘ 𝑗 ) ) = if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ) |
279 |
278
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐴 + ( ( ( 𝑆 ‘ 𝑗 ) + if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ) − ( 𝑆 ‘ 𝑗 ) ) ) = ( 𝐴 + if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ) ) |
280 |
279
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝐴 + ( ( ( 𝑆 ‘ 𝑗 ) + if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ) − ( 𝑆 ‘ 𝑗 ) ) ) = ( 𝐴 + if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ) ) |
281 |
272 276 280
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝐸 ‘ 𝑍 ) = ( 𝐴 + if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ) ) |
282 |
171
|
oveq2d |
⊢ ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) → ( 𝐴 + if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ) = ( 𝐴 + ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ) ) |
283 |
282
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → ( 𝐴 + if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ) = ( 𝐴 + ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ) ) |
284 |
112
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐴 ∈ ℝ ) |
285 |
284 109
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐴 + ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ) ∈ ℝ ) |
286 |
285
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → ( 𝐴 + ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ) ∈ ℝ ) |
287 |
284 115
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐴 + ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ∈ ℝ ) |
288 |
287
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → ( 𝐴 + ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ∈ ℝ ) |
289 |
110
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → ( 𝑄 ‘ 1 ) ∈ ℝ ) |
290 |
112
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → 𝐴 ∈ ℝ ) |
291 |
226 227 290 232
|
ltadd2dd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → ( 𝐴 + ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ) < ( 𝐴 + ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ) |
292 |
110
|
recnd |
⊢ ( 𝜑 → ( 𝑄 ‘ 1 ) ∈ ℂ ) |
293 |
112
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
294 |
|
halfaddsub |
⊢ ( ( ( 𝑄 ‘ 1 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( ( ( ( 𝑄 ‘ 1 ) + 𝐴 ) / 2 ) + ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) = ( 𝑄 ‘ 1 ) ∧ ( ( ( ( 𝑄 ‘ 1 ) + 𝐴 ) / 2 ) − ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) = 𝐴 ) ) |
295 |
292 293 294
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ( ( 𝑄 ‘ 1 ) + 𝐴 ) / 2 ) + ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) = ( 𝑄 ‘ 1 ) ∧ ( ( ( ( 𝑄 ‘ 1 ) + 𝐴 ) / 2 ) − ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) = 𝐴 ) ) |
296 |
295
|
simprd |
⊢ ( 𝜑 → ( ( ( ( 𝑄 ‘ 1 ) + 𝐴 ) / 2 ) − ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) = 𝐴 ) |
297 |
296
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 𝑄 ‘ 1 ) + 𝐴 ) / 2 ) − ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) + ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) = ( 𝐴 + ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ) |
298 |
110 112
|
readdcld |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 1 ) + 𝐴 ) ∈ ℝ ) |
299 |
298
|
rehalfcld |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 1 ) + 𝐴 ) / 2 ) ∈ ℝ ) |
300 |
299
|
recnd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 1 ) + 𝐴 ) / 2 ) ∈ ℂ ) |
301 |
114
|
recnd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ∈ ℂ ) |
302 |
300 301
|
npcand |
⊢ ( 𝜑 → ( ( ( ( ( 𝑄 ‘ 1 ) + 𝐴 ) / 2 ) − ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) + ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) = ( ( ( 𝑄 ‘ 1 ) + 𝐴 ) / 2 ) ) |
303 |
297 302
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐴 + ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) = ( ( ( 𝑄 ‘ 1 ) + 𝐴 ) / 2 ) ) |
304 |
110 110
|
readdcld |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 1 ) + ( 𝑄 ‘ 1 ) ) ∈ ℝ ) |
305 |
112 110 110 159
|
ltadd2dd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 1 ) + 𝐴 ) < ( ( 𝑄 ‘ 1 ) + ( 𝑄 ‘ 1 ) ) ) |
306 |
298 304 242 305
|
ltdiv1dd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 1 ) + 𝐴 ) / 2 ) < ( ( ( 𝑄 ‘ 1 ) + ( 𝑄 ‘ 1 ) ) / 2 ) ) |
307 |
292
|
2timesd |
⊢ ( 𝜑 → ( 2 · ( 𝑄 ‘ 1 ) ) = ( ( 𝑄 ‘ 1 ) + ( 𝑄 ‘ 1 ) ) ) |
308 |
307
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 1 ) + ( 𝑄 ‘ 1 ) ) = ( 2 · ( 𝑄 ‘ 1 ) ) ) |
309 |
308
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 1 ) + ( 𝑄 ‘ 1 ) ) / 2 ) = ( ( 2 · ( 𝑄 ‘ 1 ) ) / 2 ) ) |
310 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
311 |
|
2ne0 |
⊢ 2 ≠ 0 |
312 |
311
|
a1i |
⊢ ( 𝜑 → 2 ≠ 0 ) |
313 |
292 310 312
|
divcan3d |
⊢ ( 𝜑 → ( ( 2 · ( 𝑄 ‘ 1 ) ) / 2 ) = ( 𝑄 ‘ 1 ) ) |
314 |
309 313
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 1 ) + ( 𝑄 ‘ 1 ) ) / 2 ) = ( 𝑄 ‘ 1 ) ) |
315 |
306 314
|
breqtrd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 1 ) + 𝐴 ) / 2 ) < ( 𝑄 ‘ 1 ) ) |
316 |
303 315
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝐴 + ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) < ( 𝑄 ‘ 1 ) ) |
317 |
316
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → ( 𝐴 + ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) < ( 𝑄 ‘ 1 ) ) |
318 |
286 288 289 291 317
|
lttrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → ( 𝐴 + ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) ) < ( 𝑄 ‘ 1 ) ) |
319 |
283 318
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → ( 𝐴 + if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ) < ( 𝑄 ‘ 1 ) ) |
320 |
176
|
oveq2d |
⊢ ( ¬ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) → ( 𝐴 + if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ) = ( 𝐴 + ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ) |
321 |
320
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → ( 𝐴 + if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ) = ( 𝐴 + ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ) |
322 |
316
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → ( 𝐴 + ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) < ( 𝑄 ‘ 1 ) ) |
323 |
321 322
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) ) → ( 𝐴 + if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ) < ( 𝑄 ‘ 1 ) ) |
324 |
319 323
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐴 + if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ) < ( 𝑄 ‘ 1 ) ) |
325 |
324
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝐴 + if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ) < ( 𝑄 ‘ 1 ) ) |
326 |
281 325
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝐸 ‘ 𝑍 ) < ( 𝑄 ‘ 1 ) ) |
327 |
|
eqid |
⊢ ( ( 𝑄 ‘ 1 ) − ( ( 𝐸 ‘ 𝑍 ) − 𝑍 ) ) = ( ( 𝑄 ‘ 1 ) − ( ( 𝐸 ‘ 𝑍 ) − 𝑍 ) ) |
328 |
1 2 91 92 93 94 95 8 9 10 11 12 103 104 214 326 327
|
fourierdlem63 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ≤ ( 𝑄 ‘ 1 ) ) |
329 |
15
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → 𝐼 = ( 𝑥 ∈ ℝ ↦ sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } , ℝ , < ) ) ) |
330 |
58
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ 𝑥 = ( 𝑆 ‘ 𝑗 ) ) → sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } , ℝ , < ) = sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } , ℝ , < ) ) |
331 |
61
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } , ℝ , < ) ∈ V ) |
332 |
329 330 220 331
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } , ℝ , < ) ) |
333 |
|
fveq2 |
⊢ ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 → ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) = ( 𝐿 ‘ 𝐵 ) ) |
334 |
13
|
a1i |
⊢ ( 𝜑 → 𝐿 = ( 𝑦 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) ) ) |
335 |
|
iftrue |
⊢ ( 𝑦 = 𝐵 → if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) = 𝐴 ) |
336 |
335
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) = 𝐴 ) |
337 |
|
ubioc1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ( 𝐴 (,] 𝐵 ) ) |
338 |
243 244 218 337
|
syl3anc |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 (,] 𝐵 ) ) |
339 |
334 336 338 112
|
fvmptd |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐵 ) = 𝐴 ) |
340 |
333 339
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) = 𝐴 ) |
341 |
340
|
breq2d |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ↔ ( 𝑄 ‘ 𝑖 ) ≤ 𝐴 ) ) |
342 |
341
|
rabbidv |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } = { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ 𝐴 } ) |
343 |
342
|
supeq1d |
⊢ ( ( 𝜑 ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } , ℝ , < ) = sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ 𝐴 } , ℝ , < ) ) |
344 |
343
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } , ℝ , < ) = sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ 𝐴 } , ℝ , < ) ) |
345 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ 𝐴 } ) → 𝜑 ) |
346 |
|
elrabi |
⊢ ( 𝑗 ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ 𝐴 } → 𝑗 ∈ ( 0 ..^ 𝑀 ) ) |
347 |
346
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ 𝐴 } ) → 𝑗 ∈ ( 0 ..^ 𝑀 ) ) |
348 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑗 ) ) |
349 |
348
|
breq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑄 ‘ 𝑖 ) ≤ 𝐴 ↔ ( 𝑄 ‘ 𝑗 ) ≤ 𝐴 ) ) |
350 |
349
|
elrab |
⊢ ( 𝑗 ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ 𝐴 } ↔ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑄 ‘ 𝑗 ) ≤ 𝐴 ) ) |
351 |
350
|
simprbi |
⊢ ( 𝑗 ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ 𝐴 } → ( 𝑄 ‘ 𝑗 ) ≤ 𝐴 ) |
352 |
351
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ 𝐴 } ) → ( 𝑄 ‘ 𝑗 ) ≤ 𝐴 ) |
353 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑄 ‘ 𝑗 ) ≤ 𝐴 ) → ( 𝑄 ‘ 𝑗 ) ≤ 𝐴 ) |
354 |
112
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ 𝑗 ≤ 0 ) → 𝐴 ∈ ℝ ) |
355 |
110
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ 𝑗 ≤ 0 ) → ( 𝑄 ‘ 1 ) ∈ ℝ ) |
356 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
357 |
26
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
358 |
356 357
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑗 ) ∈ ℝ ) |
359 |
358
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ 𝑗 ≤ 0 ) → ( 𝑄 ‘ 𝑗 ) ∈ ℝ ) |
360 |
159
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ 𝑗 ≤ 0 ) → 𝐴 < ( 𝑄 ‘ 1 ) ) |
361 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ 𝑗 ≤ 0 ) → 1 ∈ ℤ ) |
362 |
|
elfzoelz |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → 𝑗 ∈ ℤ ) |
363 |
362
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ 𝑗 ≤ 0 ) → 𝑗 ∈ ℤ ) |
364 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
365 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ 𝑗 ≤ 0 ) → ¬ 𝑗 ≤ 0 ) |
366 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ 𝑗 ≤ 0 ) → 0 ∈ ℝ ) |
367 |
363
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ 𝑗 ≤ 0 ) → 𝑗 ∈ ℝ ) |
368 |
366 367
|
ltnled |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ 𝑗 ≤ 0 ) → ( 0 < 𝑗 ↔ ¬ 𝑗 ≤ 0 ) ) |
369 |
365 368
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ 𝑗 ≤ 0 ) → 0 < 𝑗 ) |
370 |
|
0zd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ 𝑗 ≤ 0 ) → 0 ∈ ℤ ) |
371 |
|
zltp1le |
⊢ ( ( 0 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 0 < 𝑗 ↔ ( 0 + 1 ) ≤ 𝑗 ) ) |
372 |
370 363 371
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ 𝑗 ≤ 0 ) → ( 0 < 𝑗 ↔ ( 0 + 1 ) ≤ 𝑗 ) ) |
373 |
369 372
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ 𝑗 ≤ 0 ) → ( 0 + 1 ) ≤ 𝑗 ) |
374 |
364 373
|
eqbrtrid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ 𝑗 ≤ 0 ) → 1 ≤ 𝑗 ) |
375 |
|
eluz2 |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 1 ) ↔ ( 1 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 1 ≤ 𝑗 ) ) |
376 |
361 363 374 375
|
syl3anbrc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ 𝑗 ≤ 0 ) → 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) |
377 |
21
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
378 |
|
0zd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 0 ∈ ℤ ) |
379 |
97
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑀 ∈ ℤ ) |
380 |
|
elfzelz |
⊢ ( 𝑙 ∈ ( 1 ... 𝑗 ) → 𝑙 ∈ ℤ ) |
381 |
380
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑙 ∈ ℤ ) |
382 |
|
0red |
⊢ ( 𝑙 ∈ ( 1 ... 𝑗 ) → 0 ∈ ℝ ) |
383 |
380
|
zred |
⊢ ( 𝑙 ∈ ( 1 ... 𝑗 ) → 𝑙 ∈ ℝ ) |
384 |
|
1red |
⊢ ( 𝑙 ∈ ( 1 ... 𝑗 ) → 1 ∈ ℝ ) |
385 |
|
0lt1 |
⊢ 0 < 1 |
386 |
385
|
a1i |
⊢ ( 𝑙 ∈ ( 1 ... 𝑗 ) → 0 < 1 ) |
387 |
|
elfzle1 |
⊢ ( 𝑙 ∈ ( 1 ... 𝑗 ) → 1 ≤ 𝑙 ) |
388 |
382 384 383 386 387
|
ltletrd |
⊢ ( 𝑙 ∈ ( 1 ... 𝑗 ) → 0 < 𝑙 ) |
389 |
382 383 388
|
ltled |
⊢ ( 𝑙 ∈ ( 1 ... 𝑗 ) → 0 ≤ 𝑙 ) |
390 |
389
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 0 ≤ 𝑙 ) |
391 |
383
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑙 ∈ ℝ ) |
392 |
97
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
393 |
392
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑀 ∈ ℝ ) |
394 |
362
|
zred |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → 𝑗 ∈ ℝ ) |
395 |
394
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑗 ∈ ℝ ) |
396 |
|
elfzle2 |
⊢ ( 𝑙 ∈ ( 1 ... 𝑗 ) → 𝑙 ≤ 𝑗 ) |
397 |
396
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑙 ≤ 𝑗 ) |
398 |
|
elfzolt2 |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → 𝑗 < 𝑀 ) |
399 |
398
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑗 < 𝑀 ) |
400 |
391 395 393 397 399
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑙 < 𝑀 ) |
401 |
391 393 400
|
ltled |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑙 ≤ 𝑀 ) |
402 |
378 379 381 390 401
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑙 ∈ ( 0 ... 𝑀 ) ) |
403 |
377 402
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → ( 𝑄 ‘ 𝑙 ) ∈ ℝ ) |
404 |
403
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ 𝑗 ≤ 0 ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → ( 𝑄 ‘ 𝑙 ) ∈ ℝ ) |
405 |
21
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
406 |
|
0zd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 0 ∈ ℤ ) |
407 |
97
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑀 ∈ ℤ ) |
408 |
|
elfzelz |
⊢ ( 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) → 𝑙 ∈ ℤ ) |
409 |
408
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑙 ∈ ℤ ) |
410 |
|
0red |
⊢ ( 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) → 0 ∈ ℝ ) |
411 |
408
|
zred |
⊢ ( 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) → 𝑙 ∈ ℝ ) |
412 |
|
1red |
⊢ ( 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) → 1 ∈ ℝ ) |
413 |
385
|
a1i |
⊢ ( 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) → 0 < 1 ) |
414 |
|
elfzle1 |
⊢ ( 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) → 1 ≤ 𝑙 ) |
415 |
410 412 411 413 414
|
ltletrd |
⊢ ( 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) → 0 < 𝑙 ) |
416 |
410 411 415
|
ltled |
⊢ ( 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) → 0 ≤ 𝑙 ) |
417 |
416
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 0 ≤ 𝑙 ) |
418 |
409
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑙 ∈ ℝ ) |
419 |
392
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑀 ∈ ℝ ) |
420 |
394
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑗 ∈ ℝ ) |
421 |
411
|
adantl |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑙 ∈ ℝ ) |
422 |
|
peano2rem |
⊢ ( 𝑗 ∈ ℝ → ( 𝑗 − 1 ) ∈ ℝ ) |
423 |
394 422
|
syl |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → ( 𝑗 − 1 ) ∈ ℝ ) |
424 |
423
|
adantr |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑗 − 1 ) ∈ ℝ ) |
425 |
394
|
adantr |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑗 ∈ ℝ ) |
426 |
|
elfzle2 |
⊢ ( 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) → 𝑙 ≤ ( 𝑗 − 1 ) ) |
427 |
426
|
adantl |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑙 ≤ ( 𝑗 − 1 ) ) |
428 |
425
|
ltm1d |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑗 − 1 ) < 𝑗 ) |
429 |
421 424 425 427 428
|
lelttrd |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑙 < 𝑗 ) |
430 |
429
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑙 < 𝑗 ) |
431 |
398
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑗 < 𝑀 ) |
432 |
418 420 419 430 431
|
lttrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑙 < 𝑀 ) |
433 |
418 419 432
|
ltled |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑙 ≤ 𝑀 ) |
434 |
406 407 409 417 433
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑙 ∈ ( 0 ... 𝑀 ) ) |
435 |
405 434
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑄 ‘ 𝑙 ) ∈ ℝ ) |
436 |
409
|
peano2zd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑙 + 1 ) ∈ ℤ ) |
437 |
411 412
|
readdcld |
⊢ ( 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) → ( 𝑙 + 1 ) ∈ ℝ ) |
438 |
411 412 415 413
|
addgt0d |
⊢ ( 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) → 0 < ( 𝑙 + 1 ) ) |
439 |
410 437 438
|
ltled |
⊢ ( 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) → 0 ≤ ( 𝑙 + 1 ) ) |
440 |
439
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 0 ≤ ( 𝑙 + 1 ) ) |
441 |
437
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑙 + 1 ) ∈ ℝ ) |
442 |
437
|
recnd |
⊢ ( 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) → ( 𝑙 + 1 ) ∈ ℂ ) |
443 |
|
1cnd |
⊢ ( 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) → 1 ∈ ℂ ) |
444 |
442 443
|
npcand |
⊢ ( 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) → ( ( ( 𝑙 + 1 ) − 1 ) + 1 ) = ( 𝑙 + 1 ) ) |
445 |
444
|
eqcomd |
⊢ ( 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) → ( 𝑙 + 1 ) = ( ( ( 𝑙 + 1 ) − 1 ) + 1 ) ) |
446 |
445
|
adantl |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑙 + 1 ) = ( ( ( 𝑙 + 1 ) − 1 ) + 1 ) ) |
447 |
|
peano2re |
⊢ ( 𝑙 ∈ ℝ → ( 𝑙 + 1 ) ∈ ℝ ) |
448 |
|
peano2rem |
⊢ ( ( 𝑙 + 1 ) ∈ ℝ → ( ( 𝑙 + 1 ) − 1 ) ∈ ℝ ) |
449 |
421 447 448
|
3syl |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( ( 𝑙 + 1 ) − 1 ) ∈ ℝ ) |
450 |
|
peano2re |
⊢ ( ( 𝑗 − 1 ) ∈ ℝ → ( ( 𝑗 − 1 ) + 1 ) ∈ ℝ ) |
451 |
|
peano2rem |
⊢ ( ( ( 𝑗 − 1 ) + 1 ) ∈ ℝ → ( ( ( 𝑗 − 1 ) + 1 ) − 1 ) ∈ ℝ ) |
452 |
424 450 451
|
3syl |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( ( ( 𝑗 − 1 ) + 1 ) − 1 ) ∈ ℝ ) |
453 |
|
1red |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 1 ∈ ℝ ) |
454 |
|
elfzel2 |
⊢ ( 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) → ( 𝑗 − 1 ) ∈ ℤ ) |
455 |
454
|
zred |
⊢ ( 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) → ( 𝑗 − 1 ) ∈ ℝ ) |
456 |
455 412
|
readdcld |
⊢ ( 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) → ( ( 𝑗 − 1 ) + 1 ) ∈ ℝ ) |
457 |
411 455 412 426
|
leadd1dd |
⊢ ( 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) → ( 𝑙 + 1 ) ≤ ( ( 𝑗 − 1 ) + 1 ) ) |
458 |
437 456 412 457
|
lesub1dd |
⊢ ( 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) → ( ( 𝑙 + 1 ) − 1 ) ≤ ( ( ( 𝑗 − 1 ) + 1 ) − 1 ) ) |
459 |
458
|
adantl |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( ( 𝑙 + 1 ) − 1 ) ≤ ( ( ( 𝑗 − 1 ) + 1 ) − 1 ) ) |
460 |
449 452 453 459
|
leadd1dd |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( ( ( 𝑙 + 1 ) − 1 ) + 1 ) ≤ ( ( ( ( 𝑗 − 1 ) + 1 ) − 1 ) + 1 ) ) |
461 |
|
peano2zm |
⊢ ( 𝑗 ∈ ℤ → ( 𝑗 − 1 ) ∈ ℤ ) |
462 |
362 461
|
syl |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → ( 𝑗 − 1 ) ∈ ℤ ) |
463 |
462
|
peano2zd |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → ( ( 𝑗 − 1 ) + 1 ) ∈ ℤ ) |
464 |
463
|
zcnd |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → ( ( 𝑗 − 1 ) + 1 ) ∈ ℂ ) |
465 |
|
1cnd |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → 1 ∈ ℂ ) |
466 |
464 465
|
npcand |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → ( ( ( ( 𝑗 − 1 ) + 1 ) − 1 ) + 1 ) = ( ( 𝑗 − 1 ) + 1 ) ) |
467 |
394
|
recnd |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → 𝑗 ∈ ℂ ) |
468 |
467 465
|
npcand |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → ( ( 𝑗 − 1 ) + 1 ) = 𝑗 ) |
469 |
466 468
|
eqtrd |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → ( ( ( ( 𝑗 − 1 ) + 1 ) − 1 ) + 1 ) = 𝑗 ) |
470 |
469
|
adantr |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( ( ( ( 𝑗 − 1 ) + 1 ) − 1 ) + 1 ) = 𝑗 ) |
471 |
460 470
|
breqtrd |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( ( ( 𝑙 + 1 ) − 1 ) + 1 ) ≤ 𝑗 ) |
472 |
446 471
|
eqbrtrd |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑙 + 1 ) ≤ 𝑗 ) |
473 |
472
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑙 + 1 ) ≤ 𝑗 ) |
474 |
441 420 419 473 431
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑙 + 1 ) < 𝑀 ) |
475 |
441 419 474
|
ltled |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑙 + 1 ) ≤ 𝑀 ) |
476 |
406 407 436 440 475
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑙 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
477 |
405 476
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑄 ‘ ( 𝑙 + 1 ) ) ∈ ℝ ) |
478 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝜑 ) |
479 |
|
0zd |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 0 ∈ ℤ ) |
480 |
408
|
adantl |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑙 ∈ ℤ ) |
481 |
416
|
adantl |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 0 ≤ 𝑙 ) |
482 |
|
eluz2 |
⊢ ( 𝑙 ∈ ( ℤ≥ ‘ 0 ) ↔ ( 0 ∈ ℤ ∧ 𝑙 ∈ ℤ ∧ 0 ≤ 𝑙 ) ) |
483 |
479 480 481 482
|
syl3anbrc |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑙 ∈ ( ℤ≥ ‘ 0 ) ) |
484 |
|
elfzoel2 |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → 𝑀 ∈ ℤ ) |
485 |
484
|
adantr |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑀 ∈ ℤ ) |
486 |
485
|
zred |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑀 ∈ ℝ ) |
487 |
398
|
adantr |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑗 < 𝑀 ) |
488 |
421 425 486 429 487
|
lttrd |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑙 < 𝑀 ) |
489 |
|
elfzo2 |
⊢ ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ↔ ( 𝑙 ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑀 ∈ ℤ ∧ 𝑙 < 𝑀 ) ) |
490 |
483 485 488 489
|
syl3anbrc |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑙 ∈ ( 0 ..^ 𝑀 ) ) |
491 |
490
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑙 ∈ ( 0 ..^ 𝑀 ) ) |
492 |
|
eleq1 |
⊢ ( 𝑖 = 𝑙 → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↔ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ) |
493 |
492
|
anbi2d |
⊢ ( 𝑖 = 𝑙 → ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ↔ ( 𝜑 ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ) ) |
494 |
|
fveq2 |
⊢ ( 𝑖 = 𝑙 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑙 ) ) |
495 |
|
oveq1 |
⊢ ( 𝑖 = 𝑙 → ( 𝑖 + 1 ) = ( 𝑙 + 1 ) ) |
496 |
495
|
fveq2d |
⊢ ( 𝑖 = 𝑙 → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑄 ‘ ( 𝑙 + 1 ) ) ) |
497 |
494 496
|
breq12d |
⊢ ( 𝑖 = 𝑙 → ( ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ↔ ( 𝑄 ‘ 𝑙 ) < ( 𝑄 ‘ ( 𝑙 + 1 ) ) ) ) |
498 |
493 497
|
imbi12d |
⊢ ( 𝑖 = 𝑙 → ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ( ( 𝜑 ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑙 ) < ( 𝑄 ‘ ( 𝑙 + 1 ) ) ) ) ) |
499 |
498 150
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑙 ) < ( 𝑄 ‘ ( 𝑙 + 1 ) ) ) |
500 |
478 491 499
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑄 ‘ 𝑙 ) < ( 𝑄 ‘ ( 𝑙 + 1 ) ) ) |
501 |
435 477 500
|
ltled |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑄 ‘ 𝑙 ) ≤ ( 𝑄 ‘ ( 𝑙 + 1 ) ) ) |
502 |
501
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ 𝑗 ≤ 0 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑄 ‘ 𝑙 ) ≤ ( 𝑄 ‘ ( 𝑙 + 1 ) ) ) |
503 |
376 404 502
|
monoord |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ 𝑗 ≤ 0 ) → ( 𝑄 ‘ 1 ) ≤ ( 𝑄 ‘ 𝑗 ) ) |
504 |
354 355 359 360 503
|
ltletrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ 𝑗 ≤ 0 ) → 𝐴 < ( 𝑄 ‘ 𝑗 ) ) |
505 |
354 359
|
ltnled |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ 𝑗 ≤ 0 ) → ( 𝐴 < ( 𝑄 ‘ 𝑗 ) ↔ ¬ ( 𝑄 ‘ 𝑗 ) ≤ 𝐴 ) ) |
506 |
504 505
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ 𝑗 ≤ 0 ) → ¬ ( 𝑄 ‘ 𝑗 ) ≤ 𝐴 ) |
507 |
506
|
ex |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( ¬ 𝑗 ≤ 0 → ¬ ( 𝑄 ‘ 𝑗 ) ≤ 𝐴 ) ) |
508 |
507
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑄 ‘ 𝑗 ) ≤ 𝐴 ) → ( ¬ 𝑗 ≤ 0 → ¬ ( 𝑄 ‘ 𝑗 ) ≤ 𝐴 ) ) |
509 |
353 508
|
mt4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑄 ‘ 𝑗 ) ≤ 𝐴 ) → 𝑗 ≤ 0 ) |
510 |
|
elfzole1 |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → 0 ≤ 𝑗 ) |
511 |
510
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑄 ‘ 𝑗 ) ≤ 𝐴 ) → 0 ≤ 𝑗 ) |
512 |
394
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑄 ‘ 𝑗 ) ≤ 𝐴 ) → 𝑗 ∈ ℝ ) |
513 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑄 ‘ 𝑗 ) ≤ 𝐴 ) → 0 ∈ ℝ ) |
514 |
512 513
|
letri3d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑄 ‘ 𝑗 ) ≤ 𝐴 ) → ( 𝑗 = 0 ↔ ( 𝑗 ≤ 0 ∧ 0 ≤ 𝑗 ) ) ) |
515 |
509 511 514
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑄 ‘ 𝑗 ) ≤ 𝐴 ) → 𝑗 = 0 ) |
516 |
345 347 352 515
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ 𝐴 } ) → 𝑗 = 0 ) |
517 |
|
velsn |
⊢ ( 𝑗 ∈ { 0 } ↔ 𝑗 = 0 ) |
518 |
516 517
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ 𝐴 } ) → 𝑗 ∈ { 0 } ) |
519 |
518
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ 𝐴 } 𝑗 ∈ { 0 } ) |
520 |
|
dfss3 |
⊢ ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ 𝐴 } ⊆ { 0 } ↔ ∀ 𝑗 ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ 𝐴 } 𝑗 ∈ { 0 } ) |
521 |
519 520
|
sylibr |
⊢ ( 𝜑 → { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ 𝐴 } ⊆ { 0 } ) |
522 |
155 112
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) ∈ ℝ ) |
523 |
522 155
|
eqled |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) ≤ 𝐴 ) |
524 |
143
|
breq1d |
⊢ ( 𝑖 = 0 → ( ( 𝑄 ‘ 𝑖 ) ≤ 𝐴 ↔ ( 𝑄 ‘ 0 ) ≤ 𝐴 ) ) |
525 |
524
|
elrab |
⊢ ( 0 ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ 𝐴 } ↔ ( 0 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑄 ‘ 0 ) ≤ 𝐴 ) ) |
526 |
139 523 525
|
sylanbrc |
⊢ ( 𝜑 → 0 ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ 𝐴 } ) |
527 |
526
|
snssd |
⊢ ( 𝜑 → { 0 } ⊆ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ 𝐴 } ) |
528 |
521 527
|
eqssd |
⊢ ( 𝜑 → { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ 𝐴 } = { 0 } ) |
529 |
528
|
supeq1d |
⊢ ( 𝜑 → sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ 𝐴 } , ℝ , < ) = sup ( { 0 } , ℝ , < ) ) |
530 |
|
supsn |
⊢ ( ( < Or ℝ ∧ 0 ∈ ℝ ) → sup ( { 0 } , ℝ , < ) = 0 ) |
531 |
60 140 530
|
mp2an |
⊢ sup ( { 0 } , ℝ , < ) = 0 |
532 |
531
|
a1i |
⊢ ( 𝜑 → sup ( { 0 } , ℝ , < ) = 0 ) |
533 |
529 532
|
eqtrd |
⊢ ( 𝜑 → sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ 𝐴 } , ℝ , < ) = 0 ) |
534 |
533
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ 𝐴 } , ℝ , < ) = 0 ) |
535 |
332 344 534
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = 0 ) |
536 |
535
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) = ( 0 + 1 ) ) |
537 |
536
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) = ( 𝑄 ‘ ( 0 + 1 ) ) ) |
538 |
537 157
|
eqtr2di |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝑄 ‘ 1 ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) |
539 |
328 538
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ≤ ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) |
540 |
66
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝜑 ∧ ( 𝑆 ‘ 𝑗 ) ∈ ℝ ) ) |
541 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → 𝑗 ∈ ( 0 ..^ 𝑁 ) ) |
542 |
13
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → 𝐿 = ( 𝑦 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) ) ) |
543 |
|
simpr |
⊢ ( ( ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ∧ 𝑦 = ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) → 𝑦 = ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) |
544 |
|
neqne |
⊢ ( ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ≠ 𝐵 ) |
545 |
544
|
adantr |
⊢ ( ( ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ∧ 𝑦 = ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ≠ 𝐵 ) |
546 |
543 545
|
eqnetrd |
⊢ ( ( ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ∧ 𝑦 = ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) → 𝑦 ≠ 𝐵 ) |
547 |
546
|
neneqd |
⊢ ( ( ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ∧ 𝑦 = ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) → ¬ 𝑦 = 𝐵 ) |
548 |
547
|
iffalsed |
⊢ ( ( ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ∧ 𝑦 = ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) → if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) = 𝑦 ) |
549 |
548 543
|
eqtrd |
⊢ ( ( ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ∧ 𝑦 = ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) → if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) = ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) |
550 |
549
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ 𝑦 = ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) → if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) = ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) |
551 |
112 216 218 1 12
|
fourierdlem4 |
⊢ ( 𝜑 → 𝐸 : ℝ ⟶ ( 𝐴 (,] 𝐵 ) ) |
552 |
551
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐸 : ℝ ⟶ ( 𝐴 (,] 𝐵 ) ) |
553 |
552 43
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ∈ ( 𝐴 (,] 𝐵 ) ) |
554 |
553
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ∈ ( 𝐴 (,] 𝐵 ) ) |
555 |
542 550 554 554
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) = ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) |
556 |
555
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) |
557 |
112 216 218 13
|
fourierdlem17 |
⊢ ( 𝜑 → 𝐿 : ( 𝐴 (,] 𝐵 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
558 |
557
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐿 : ( 𝐴 (,] 𝐵 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
559 |
112 216
|
iccssred |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
560 |
559
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
561 |
558 560
|
fssd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐿 : ( 𝐴 (,] 𝐵 ) ⟶ ℝ ) |
562 |
561 553
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ∈ ℝ ) |
563 |
562
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ∈ ℝ ) |
564 |
556 563
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ∈ ℝ ) |
565 |
216
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → 𝐵 ∈ ℝ ) |
566 |
243
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐴 ∈ ℝ* ) |
567 |
216
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐵 ∈ ℝ ) |
568 |
|
elioc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ∈ ( 𝐴 (,] 𝐵 ) ↔ ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ∈ ℝ ∧ 𝐴 < ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝐵 ) ) ) |
569 |
566 567 568
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ∈ ( 𝐴 (,] 𝐵 ) ↔ ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ∈ ℝ ∧ 𝐴 < ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝐵 ) ) ) |
570 |
553 569
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ∈ ℝ ∧ 𝐴 < ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝐵 ) ) |
571 |
570
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝐵 ) |
572 |
571
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝐵 ) |
573 |
544
|
necomd |
⊢ ( ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 → 𝐵 ≠ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) |
574 |
573
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → 𝐵 ≠ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) |
575 |
564 565 572 574
|
leneltd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) < 𝐵 ) |
576 |
575
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) < 𝐵 ) |
577 |
|
oveq1 |
⊢ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) → ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) = ( ( 𝑀 − 1 ) + 1 ) ) |
578 |
3
|
nncnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
579 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
580 |
578 579
|
npcand |
⊢ ( 𝜑 → ( ( 𝑀 − 1 ) + 1 ) = 𝑀 ) |
581 |
577 580
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) → ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) = 𝑀 ) |
582 |
581
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) → ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) = ( 𝑄 ‘ 𝑀 ) ) |
583 |
154
|
simprd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) = 𝐵 ) |
584 |
583
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) → ( 𝑄 ‘ 𝑀 ) = 𝐵 ) |
585 |
582 584
|
eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) → 𝐵 = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) |
586 |
585
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) → 𝐵 = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) |
587 |
586
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) → 𝐵 = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) |
588 |
576 587
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) < ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) |
589 |
556
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) |
590 |
|
ssrab2 |
⊢ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } ⊆ ( 0 ..^ 𝑀 ) |
591 |
|
fzssz |
⊢ ( 0 ... 𝑀 ) ⊆ ℤ |
592 |
25 591
|
sstri |
⊢ ( 0 ..^ 𝑀 ) ⊆ ℤ |
593 |
|
zssre |
⊢ ℤ ⊆ ℝ |
594 |
592 593
|
sstri |
⊢ ( 0 ..^ 𝑀 ) ⊆ ℝ |
595 |
590 594
|
sstri |
⊢ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } ⊆ ℝ |
596 |
595
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) ∧ ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) → { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } ⊆ ℝ ) |
597 |
57
|
neeq1d |
⊢ ( 𝑥 = ( 𝑆 ‘ 𝑗 ) → ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } ≠ ∅ ↔ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } ≠ ∅ ) ) |
598 |
68 597
|
imbi12d |
⊢ ( 𝑥 = ( 𝑆 ‘ 𝑗 ) → ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } ≠ ∅ ) ↔ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝑗 ) ∈ ℝ ) → { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } ≠ ∅ ) ) ) |
599 |
139
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 0 ∈ ( 0 ..^ 𝑀 ) ) |
600 |
523
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐸 ‘ 𝑥 ) = 𝐵 ) → ( 𝑄 ‘ 0 ) ≤ 𝐴 ) |
601 |
|
iftrue |
⊢ ( ( 𝐸 ‘ 𝑥 ) = 𝐵 → if ( ( 𝐸 ‘ 𝑥 ) = 𝐵 , 𝐴 , ( 𝐸 ‘ 𝑥 ) ) = 𝐴 ) |
602 |
601
|
eqcomd |
⊢ ( ( 𝐸 ‘ 𝑥 ) = 𝐵 → 𝐴 = if ( ( 𝐸 ‘ 𝑥 ) = 𝐵 , 𝐴 , ( 𝐸 ‘ 𝑥 ) ) ) |
603 |
602
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐸 ‘ 𝑥 ) = 𝐵 ) → 𝐴 = if ( ( 𝐸 ‘ 𝑥 ) = 𝐵 , 𝐴 , ( 𝐸 ‘ 𝑥 ) ) ) |
604 |
600 603
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐸 ‘ 𝑥 ) = 𝐵 ) → ( 𝑄 ‘ 0 ) ≤ if ( ( 𝐸 ‘ 𝑥 ) = 𝐵 , 𝐴 , ( 𝐸 ‘ 𝑥 ) ) ) |
605 |
522
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑄 ‘ 0 ) ∈ ℝ ) |
606 |
112
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
607 |
606
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝐴 ∈ ℝ* ) |
608 |
216
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
609 |
|
iocssre |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐴 (,] 𝐵 ) ⊆ ℝ ) |
610 |
607 608 609
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐴 (,] 𝐵 ) ⊆ ℝ ) |
611 |
551
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐸 ‘ 𝑥 ) ∈ ( 𝐴 (,] 𝐵 ) ) |
612 |
610 611
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐸 ‘ 𝑥 ) ∈ ℝ ) |
613 |
155
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑄 ‘ 0 ) = 𝐴 ) |
614 |
|
elioc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ( 𝐸 ‘ 𝑥 ) ∈ ( 𝐴 (,] 𝐵 ) ↔ ( ( 𝐸 ‘ 𝑥 ) ∈ ℝ ∧ 𝐴 < ( 𝐸 ‘ 𝑥 ) ∧ ( 𝐸 ‘ 𝑥 ) ≤ 𝐵 ) ) ) |
615 |
607 608 614
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐸 ‘ 𝑥 ) ∈ ( 𝐴 (,] 𝐵 ) ↔ ( ( 𝐸 ‘ 𝑥 ) ∈ ℝ ∧ 𝐴 < ( 𝐸 ‘ 𝑥 ) ∧ ( 𝐸 ‘ 𝑥 ) ≤ 𝐵 ) ) ) |
616 |
611 615
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐸 ‘ 𝑥 ) ∈ ℝ ∧ 𝐴 < ( 𝐸 ‘ 𝑥 ) ∧ ( 𝐸 ‘ 𝑥 ) ≤ 𝐵 ) ) |
617 |
616
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝐴 < ( 𝐸 ‘ 𝑥 ) ) |
618 |
613 617
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑄 ‘ 0 ) < ( 𝐸 ‘ 𝑥 ) ) |
619 |
605 612 618
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑄 ‘ 0 ) ≤ ( 𝐸 ‘ 𝑥 ) ) |
620 |
619
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ ( 𝐸 ‘ 𝑥 ) = 𝐵 ) → ( 𝑄 ‘ 0 ) ≤ ( 𝐸 ‘ 𝑥 ) ) |
621 |
|
iffalse |
⊢ ( ¬ ( 𝐸 ‘ 𝑥 ) = 𝐵 → if ( ( 𝐸 ‘ 𝑥 ) = 𝐵 , 𝐴 , ( 𝐸 ‘ 𝑥 ) ) = ( 𝐸 ‘ 𝑥 ) ) |
622 |
621
|
eqcomd |
⊢ ( ¬ ( 𝐸 ‘ 𝑥 ) = 𝐵 → ( 𝐸 ‘ 𝑥 ) = if ( ( 𝐸 ‘ 𝑥 ) = 𝐵 , 𝐴 , ( 𝐸 ‘ 𝑥 ) ) ) |
623 |
622
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ ( 𝐸 ‘ 𝑥 ) = 𝐵 ) → ( 𝐸 ‘ 𝑥 ) = if ( ( 𝐸 ‘ 𝑥 ) = 𝐵 , 𝐴 , ( 𝐸 ‘ 𝑥 ) ) ) |
624 |
620 623
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ ( 𝐸 ‘ 𝑥 ) = 𝐵 ) → ( 𝑄 ‘ 0 ) ≤ if ( ( 𝐸 ‘ 𝑥 ) = 𝐵 , 𝐴 , ( 𝐸 ‘ 𝑥 ) ) ) |
625 |
604 624
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑄 ‘ 0 ) ≤ if ( ( 𝐸 ‘ 𝑥 ) = 𝐵 , 𝐴 , ( 𝐸 ‘ 𝑥 ) ) ) |
626 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝐿 = ( 𝑦 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) ) ) |
627 |
|
eqeq1 |
⊢ ( 𝑦 = ( 𝐸 ‘ 𝑥 ) → ( 𝑦 = 𝐵 ↔ ( 𝐸 ‘ 𝑥 ) = 𝐵 ) ) |
628 |
|
id |
⊢ ( 𝑦 = ( 𝐸 ‘ 𝑥 ) → 𝑦 = ( 𝐸 ‘ 𝑥 ) ) |
629 |
627 628
|
ifbieq2d |
⊢ ( 𝑦 = ( 𝐸 ‘ 𝑥 ) → if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) = if ( ( 𝐸 ‘ 𝑥 ) = 𝐵 , 𝐴 , ( 𝐸 ‘ 𝑥 ) ) ) |
630 |
629
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 = ( 𝐸 ‘ 𝑥 ) ) → if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) = if ( ( 𝐸 ‘ 𝑥 ) = 𝐵 , 𝐴 , ( 𝐸 ‘ 𝑥 ) ) ) |
631 |
606 612
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐸 ‘ 𝑥 ) = 𝐵 , 𝐴 , ( 𝐸 ‘ 𝑥 ) ) ∈ ℝ ) |
632 |
626 630 611 631
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) = if ( ( 𝐸 ‘ 𝑥 ) = 𝐵 , 𝐴 , ( 𝐸 ‘ 𝑥 ) ) ) |
633 |
625 632
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑄 ‘ 0 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) ) |
634 |
143
|
breq1d |
⊢ ( 𝑖 = 0 → ( ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) ↔ ( 𝑄 ‘ 0 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) ) ) |
635 |
634
|
elrab |
⊢ ( 0 ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } ↔ ( 0 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑄 ‘ 0 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) ) ) |
636 |
599 633 635
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 0 ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } ) |
637 |
|
ne0i |
⊢ ( 0 ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } → { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } ≠ ∅ ) |
638 |
636 637
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } ≠ ∅ ) |
639 |
598 638
|
vtoclg |
⊢ ( ( 𝑆 ‘ 𝑗 ) ∈ ℝ → ( ( 𝜑 ∧ ( 𝑆 ‘ 𝑗 ) ∈ ℝ ) → { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } ≠ ∅ ) ) |
640 |
43 66 639
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } ≠ ∅ ) |
641 |
640
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) ∧ ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) → { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } ≠ ∅ ) |
642 |
595
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } ⊆ ℝ ) |
643 |
|
fzofi |
⊢ ( 0 ..^ 𝑀 ) ∈ Fin |
644 |
|
ssfi |
⊢ ( ( ( 0 ..^ 𝑀 ) ∈ Fin ∧ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } ⊆ ( 0 ..^ 𝑀 ) ) → { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } ∈ Fin ) |
645 |
643 590 644
|
mp2an |
⊢ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } ∈ Fin |
646 |
645
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } ∈ Fin ) |
647 |
|
fimaxre2 |
⊢ ( ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } ⊆ ℝ ∧ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } ∈ Fin ) → ∃ 𝑥 ∈ ℝ ∀ 𝑙 ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } 𝑙 ≤ 𝑥 ) |
648 |
642 646 647
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑙 ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } 𝑙 ≤ 𝑥 ) |
649 |
648
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) ∧ ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑙 ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } 𝑙 ≤ 𝑥 ) |
650 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 0 ∈ ℝ ) |
651 |
594 48
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ∈ ℝ ) |
652 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 1 ∈ ℝ ) |
653 |
651 652
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ∈ ℝ ) |
654 |
|
elfzouz |
⊢ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ∈ ( 0 ..^ 𝑀 ) → ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ∈ ( ℤ≥ ‘ 0 ) ) |
655 |
|
eluzle |
⊢ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ∈ ( ℤ≥ ‘ 0 ) → 0 ≤ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) |
656 |
48 654 655
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 0 ≤ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) |
657 |
385
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 0 < 1 ) |
658 |
651 652 656 657
|
addgegt0d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 0 < ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) |
659 |
650 653 658
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 0 ≤ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) |
660 |
659
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) → 0 ≤ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) |
661 |
651
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) → ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ∈ ℝ ) |
662 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
663 |
392 662
|
resubcld |
⊢ ( 𝜑 → ( 𝑀 − 1 ) ∈ ℝ ) |
664 |
663
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) → ( 𝑀 − 1 ) ∈ ℝ ) |
665 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) → 1 ∈ ℝ ) |
666 |
|
elfzolt2 |
⊢ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ∈ ( 0 ..^ 𝑀 ) → ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) < 𝑀 ) |
667 |
48 666
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) < 𝑀 ) |
668 |
44
|
elfzelzd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ∈ ℤ ) |
669 |
97
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑀 ∈ ℤ ) |
670 |
|
zltlem1 |
⊢ ( ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) < 𝑀 ↔ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ ( 𝑀 − 1 ) ) ) |
671 |
668 669 670
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) < 𝑀 ↔ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ ( 𝑀 − 1 ) ) ) |
672 |
667 671
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ ( 𝑀 − 1 ) ) |
673 |
672
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) → ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ ( 𝑀 − 1 ) ) |
674 |
|
neqne |
⊢ ( ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) → ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ≠ ( 𝑀 − 1 ) ) |
675 |
674
|
necomd |
⊢ ( ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) → ( 𝑀 − 1 ) ≠ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) |
676 |
675
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) → ( 𝑀 − 1 ) ≠ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) |
677 |
661 664 673 676
|
leneltd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) → ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) < ( 𝑀 − 1 ) ) |
678 |
661 664 665 677
|
ltadd1dd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) → ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) < ( ( 𝑀 − 1 ) + 1 ) ) |
679 |
580
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) → ( ( 𝑀 − 1 ) + 1 ) = 𝑀 ) |
680 |
678 679
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) → ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) < 𝑀 ) |
681 |
50
|
elfzelzd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ∈ ℤ ) |
682 |
681
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) → ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ∈ ℤ ) |
683 |
|
0zd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) → 0 ∈ ℤ ) |
684 |
97
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) → 𝑀 ∈ ℤ ) |
685 |
|
elfzo |
⊢ ( ( ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ∈ ( 0 ..^ 𝑀 ) ↔ ( 0 ≤ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ∧ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) < 𝑀 ) ) ) |
686 |
682 683 684 685
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) → ( ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ∈ ( 0 ..^ 𝑀 ) ↔ ( 0 ≤ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ∧ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) < 𝑀 ) ) ) |
687 |
660 680 686
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) → ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ∈ ( 0 ..^ 𝑀 ) ) |
688 |
687
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) ∧ ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) → ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ∈ ( 0 ..^ 𝑀 ) ) |
689 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) ∧ ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) → ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) |
690 |
|
fveq2 |
⊢ ( 𝑖 = ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) |
691 |
690
|
breq1d |
⊢ ( 𝑖 = ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) → ( ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ↔ ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) ) |
692 |
691
|
elrab |
⊢ ( ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } ↔ ( ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) ) |
693 |
688 689 692
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) ∧ ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) → ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } ) |
694 |
|
suprub |
⊢ ( ( ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } ⊆ ℝ ∧ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑙 ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } 𝑙 ≤ 𝑥 ) ∧ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } ) → ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ≤ sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } , ℝ , < ) ) |
695 |
596 641 649 693 694
|
syl31anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) ∧ ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) → ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ≤ sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } , ℝ , < ) ) |
696 |
63
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } , ℝ , < ) = ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) |
697 |
696
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) ∧ ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) → sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) } , ℝ , < ) = ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) |
698 |
695 697
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) ∧ ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) → ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ≤ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) |
699 |
651
|
ltp1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) |
700 |
651 653
|
ltnled |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ↔ ¬ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ≤ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) |
701 |
699 700
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ¬ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ≤ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) |
702 |
701
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) ∧ ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) → ¬ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ≤ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) |
703 |
698 702
|
pm2.65da |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) → ¬ ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) |
704 |
562
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) → ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ∈ ℝ ) |
705 |
51
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) → ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ∈ ℝ ) |
706 |
704 705
|
ltnled |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) → ( ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) < ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ↔ ¬ ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) ) |
707 |
703 706
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) → ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) < ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) |
708 |
707
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) → ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) < ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) |
709 |
589 708
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) ∧ ¬ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝑀 − 1 ) ) → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) < ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) |
710 |
588 709
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) < ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) |
711 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) < ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) → 𝑀 ∈ ℕ ) |
712 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) < ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
713 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) < ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) → 𝐶 ∈ ℝ ) |
714 |
6
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) < ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) → 𝐷 ∈ ℝ ) |
715 |
7
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) < ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) → 𝐶 < 𝐷 ) |
716 |
50
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) < ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) → ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ∈ ( 0 ... 𝑀 ) ) |
717 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) < ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) → 𝑗 ∈ ( 0 ..^ 𝑁 ) ) |
718 |
43
|
leidd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ 𝑗 ) ≤ ( 𝑆 ‘ 𝑗 ) ) |
719 |
|
elico2 |
⊢ ( ( ( 𝑆 ‘ 𝑗 ) ∈ ℝ ∧ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∈ ℝ* ) → ( ( 𝑆 ‘ 𝑗 ) ∈ ( ( 𝑆 ‘ 𝑗 ) [,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ↔ ( ( 𝑆 ‘ 𝑗 ) ∈ ℝ ∧ ( 𝑆 ‘ 𝑗 ) ≤ ( 𝑆 ‘ 𝑗 ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
720 |
43 210 719
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) ∈ ( ( 𝑆 ‘ 𝑗 ) [,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ↔ ( ( 𝑆 ‘ 𝑗 ) ∈ ℝ ∧ ( 𝑆 ‘ 𝑗 ) ≤ ( 𝑆 ‘ 𝑗 ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
721 |
43 718 129 720
|
mpbir3and |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ 𝑗 ) ∈ ( ( 𝑆 ‘ 𝑗 ) [,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
722 |
721
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) < ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) → ( 𝑆 ‘ 𝑗 ) ∈ ( ( 𝑆 ‘ 𝑗 ) [,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
723 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) < ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) < ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) |
724 |
|
eqid |
⊢ ( ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) − ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) ) = ( ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) − ( ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) − ( 𝑆 ‘ 𝑗 ) ) ) |
725 |
1 2 711 712 713 714 715 8 9 10 11 12 716 717 722 723 724
|
fourierdlem63 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) < ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ≤ ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) |
726 |
725
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ ( 𝑆 ‘ 𝑗 ) ∈ ℝ ) ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) < ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ≤ ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) |
727 |
540 541 710 726
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = 𝐵 ) → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ≤ ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) |
728 |
539 727
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ≤ ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) |
729 |
|
ioossioo |
⊢ ( ( ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ∈ ℝ* ∧ ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ∈ ℝ* ) ∧ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ≤ ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) ) → ( ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ⊆ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) ) |
730 |
46 52 90 728 729
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐿 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ⊆ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) ) |