Metamath Proof Explorer


Theorem fourierdlem8

Description: A partition interval is a subset of the partitioned interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem8.a ( 𝜑𝐴 ∈ ℝ* )
fourierdlem8.b ( 𝜑𝐵 ∈ ℝ* )
fourierdlem8.q ( 𝜑𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) )
fourierdlem8.i ( 𝜑𝐼 ∈ ( 0 ..^ 𝑀 ) )
Assertion fourierdlem8 ( 𝜑 → ( ( 𝑄𝐼 ) [,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ⊆ ( 𝐴 [,] 𝐵 ) )

Proof

Step Hyp Ref Expression
1 fourierdlem8.a ( 𝜑𝐴 ∈ ℝ* )
2 fourierdlem8.b ( 𝜑𝐵 ∈ ℝ* )
3 fourierdlem8.q ( 𝜑𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) )
4 fourierdlem8.i ( 𝜑𝐼 ∈ ( 0 ..^ 𝑀 ) )
5 1 adantr ( ( 𝜑𝑥 ∈ ( ( 𝑄𝐼 ) [,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → 𝐴 ∈ ℝ* )
6 2 adantr ( ( 𝜑𝑥 ∈ ( ( 𝑄𝐼 ) [,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → 𝐵 ∈ ℝ* )
7 3 adantr ( ( 𝜑𝑥 ∈ ( ( 𝑄𝐼 ) [,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) )
8 4 adantr ( ( 𝜑𝑥 ∈ ( ( 𝑄𝐼 ) [,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → 𝐼 ∈ ( 0 ..^ 𝑀 ) )
9 simpr ( ( 𝜑𝑥 ∈ ( ( 𝑄𝐼 ) [,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → 𝑥 ∈ ( ( 𝑄𝐼 ) [,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) )
10 5 6 7 8 9 fourierdlem1 ( ( 𝜑𝑥 ∈ ( ( 𝑄𝐼 ) [,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) )
11 10 ralrimiva ( 𝜑 → ∀ 𝑥 ∈ ( ( 𝑄𝐼 ) [,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) 𝑥 ∈ ( 𝐴 [,] 𝐵 ) )
12 dfss3 ( ( ( 𝑄𝐼 ) [,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ⊆ ( 𝐴 [,] 𝐵 ) ↔ ∀ 𝑥 ∈ ( ( 𝑄𝐼 ) [,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) 𝑥 ∈ ( 𝐴 [,] 𝐵 ) )
13 11 12 sylibr ( 𝜑 → ( ( 𝑄𝐼 ) [,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ⊆ ( 𝐴 [,] 𝐵 ) )