Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem80.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
2 |
|
fourierdlem80.xre |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
3 |
|
fourierdlem80.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
4 |
|
fourierdlem80.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
5 |
|
fourierdlem80.ab |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ( - π [,] π ) ) |
6 |
|
fourierdlem80.n0 |
⊢ ( 𝜑 → ¬ 0 ∈ ( 𝐴 [,] 𝐵 ) ) |
7 |
|
fourierdlem80.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
8 |
|
fourierdlem80.o |
⊢ 𝑂 = ( 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) |
9 |
|
fourierdlem80.i |
⊢ 𝐼 = ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
10 |
|
fourierdlem80.fbdioo |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ∃ 𝑤 ∈ ℝ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ) |
11 |
|
fourierdlem80.fdvbdioo |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
12 |
|
fourierdlem80.sf |
⊢ ( 𝜑 → 𝑆 : ( 0 ... 𝑁 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
13 |
|
fourierdlem80.slt |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) |
14 |
|
fourierdlem80.sjss |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) [,] ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
15 |
|
fourierdlem80.relioo |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑟 ∈ ran 𝑆 ) → ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑟 ∈ ( ( 𝑆 ‘ 𝑘 ) (,) ( 𝑆 ‘ ( 𝑘 + 1 ) ) ) ) |
16 |
|
fdv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ℝ D ( 𝐹 ↾ 𝐼 ) ) : 𝐼 ⟶ ℝ ) |
17 |
|
fourierdlem80.y |
⊢ 𝑌 = ( 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) |
18 |
|
fourierdlem80.ch |
⊢ ( 𝜒 ↔ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ) ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) |
19 |
|
oveq2 |
⊢ ( 𝑠 = 𝑡 → ( 𝑋 + 𝑠 ) = ( 𝑋 + 𝑡 ) ) |
20 |
19
|
fveq2d |
⊢ ( 𝑠 = 𝑡 → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ) |
21 |
20
|
oveq1d |
⊢ ( 𝑠 = 𝑡 → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) ) |
22 |
|
oveq1 |
⊢ ( 𝑠 = 𝑡 → ( 𝑠 / 2 ) = ( 𝑡 / 2 ) ) |
23 |
22
|
fveq2d |
⊢ ( 𝑠 = 𝑡 → ( sin ‘ ( 𝑠 / 2 ) ) = ( sin ‘ ( 𝑡 / 2 ) ) ) |
24 |
23
|
oveq2d |
⊢ ( 𝑠 = 𝑡 → ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) = ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) |
25 |
21 24
|
oveq12d |
⊢ ( 𝑠 = 𝑡 → ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) = ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) |
26 |
25
|
cbvmptv |
⊢ ( 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) = ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) |
27 |
8 26
|
eqtr2i |
⊢ ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) = 𝑂 |
28 |
27
|
oveq2i |
⊢ ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) ) = ( ℝ D 𝑂 ) |
29 |
28
|
dmeqi |
⊢ dom ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) ) = dom ( ℝ D 𝑂 ) |
30 |
29
|
ineq2i |
⊢ ( ran 𝑆 ∩ dom ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) ) ) = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) |
31 |
30
|
sneqi |
⊢ { ( ran 𝑆 ∩ dom ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) ) ) } = { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } |
32 |
31
|
uneq1i |
⊢ ( { ( ran 𝑆 ∩ dom ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
33 |
|
snfi |
⊢ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∈ Fin |
34 |
|
fzofi |
⊢ ( 0 ..^ 𝑁 ) ∈ Fin |
35 |
|
eqid |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) = ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
36 |
35
|
rnmptfi |
⊢ ( ( 0 ..^ 𝑁 ) ∈ Fin → ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ∈ Fin ) |
37 |
34 36
|
ax-mp |
⊢ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ∈ Fin |
38 |
|
unfi |
⊢ ( ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∈ Fin ∧ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ∈ Fin ) → ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ∈ Fin ) |
39 |
33 37 38
|
mp2an |
⊢ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ∈ Fin |
40 |
39
|
a1i |
⊢ ( 𝜑 → ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ∈ Fin ) |
41 |
32 40
|
eqeltrid |
⊢ ( 𝜑 → ( { ( ran 𝑆 ∩ dom ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ∈ Fin ) |
42 |
|
id |
⊢ ( 𝑠 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) → 𝑠 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
43 |
32
|
unieqi |
⊢ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) = ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
44 |
42 43
|
eleqtrdi |
⊢ ( 𝑠 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) → 𝑠 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
45 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) → 𝜑 ) |
46 |
|
uniun |
⊢ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
47 |
46
|
eleq2i |
⊢ ( 𝑠 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ↔ 𝑠 ∈ ( ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
48 |
|
elun |
⊢ ( 𝑠 ∈ ( ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ↔ ( 𝑠 ∈ ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∨ 𝑠 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
49 |
47 48
|
sylbb |
⊢ ( 𝑠 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) → ( 𝑠 ∈ ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∨ 𝑠 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
50 |
49
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) → ( 𝑠 ∈ ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∨ 𝑠 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
51 |
|
ovex |
⊢ ( 0 ... 𝑁 ) ∈ V |
52 |
51
|
a1i |
⊢ ( 𝜑 → ( 0 ... 𝑁 ) ∈ V ) |
53 |
12 52
|
fexd |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
54 |
|
rnexg |
⊢ ( 𝑆 ∈ V → ran 𝑆 ∈ V ) |
55 |
53 54
|
syl |
⊢ ( 𝜑 → ran 𝑆 ∈ V ) |
56 |
|
inex1g |
⊢ ( ran 𝑆 ∈ V → ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ∈ V ) |
57 |
55 56
|
syl |
⊢ ( 𝜑 → ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ∈ V ) |
58 |
|
unisng |
⊢ ( ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ∈ V → ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) |
59 |
57 58
|
syl |
⊢ ( 𝜑 → ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) |
60 |
59
|
eleq2d |
⊢ ( 𝜑 → ( 𝑠 ∈ ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ↔ 𝑠 ∈ ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) ) |
61 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) → ( 𝑠 ∈ ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ↔ 𝑠 ∈ ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) ) |
62 |
61
|
orbi1d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) → ( ( 𝑠 ∈ ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∨ 𝑠 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ↔ ( 𝑠 ∈ ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ∨ 𝑠 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ) |
63 |
50 62
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) → ( 𝑠 ∈ ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ∨ 𝑠 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
64 |
|
dvf |
⊢ ( ℝ D 𝑂 ) : dom ( ℝ D 𝑂 ) ⟶ ℂ |
65 |
64
|
a1i |
⊢ ( 𝑠 ∈ ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) → ( ℝ D 𝑂 ) : dom ( ℝ D 𝑂 ) ⟶ ℂ ) |
66 |
|
elinel2 |
⊢ ( 𝑠 ∈ ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) → 𝑠 ∈ dom ( ℝ D 𝑂 ) ) |
67 |
65 66
|
ffvelrnd |
⊢ ( 𝑠 ∈ ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) → ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ∈ ℂ ) |
68 |
67
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) → ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ∈ ℂ ) |
69 |
|
ovex |
⊢ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ∈ V |
70 |
69
|
dfiun3 |
⊢ ∪ 𝑗 ∈ ( 0 ..^ 𝑁 ) ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) = ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
71 |
70
|
eleq2i |
⊢ ( 𝑠 ∈ ∪ 𝑗 ∈ ( 0 ..^ 𝑁 ) ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ↔ 𝑠 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
72 |
71
|
biimpri |
⊢ ( 𝑠 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → 𝑠 ∈ ∪ 𝑗 ∈ ( 0 ..^ 𝑁 ) ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
73 |
72
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) → 𝑠 ∈ ∪ 𝑗 ∈ ( 0 ..^ 𝑁 ) ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
74 |
|
eliun |
⊢ ( 𝑠 ∈ ∪ 𝑗 ∈ ( 0 ..^ 𝑁 ) ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ↔ ∃ 𝑗 ∈ ( 0 ..^ 𝑁 ) 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
75 |
73 74
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) → ∃ 𝑗 ∈ ( 0 ..^ 𝑁 ) 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
76 |
|
nfv |
⊢ Ⅎ 𝑗 𝜑 |
77 |
|
nfmpt1 |
⊢ Ⅎ 𝑗 ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
78 |
77
|
nfrn |
⊢ Ⅎ 𝑗 ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
79 |
78
|
nfuni |
⊢ Ⅎ 𝑗 ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
80 |
79
|
nfcri |
⊢ Ⅎ 𝑗 𝑠 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
81 |
76 80
|
nfan |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑠 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
82 |
|
nfv |
⊢ Ⅎ 𝑗 ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ∈ ℂ |
83 |
64
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → ( ℝ D 𝑂 ) : dom ( ℝ D 𝑂 ) ⟶ ℂ ) |
84 |
8
|
reseq1i |
⊢ ( 𝑂 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) = ( ( 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
85 |
|
ioossicc |
⊢ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⊆ ( ( 𝑆 ‘ 𝑗 ) [,] ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) |
86 |
85 14
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
87 |
86
|
resmptd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) |
88 |
84 87
|
syl5eq |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑂 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) |
89 |
17 88
|
eqtr4id |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑌 = ( 𝑂 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
90 |
89
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ℝ D 𝑌 ) = ( ℝ D ( 𝑂 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
91 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
92 |
91
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
93 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐹 : ℝ ⟶ ℝ ) |
94 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑋 ∈ ℝ ) |
95 |
3 4
|
iccssred |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
96 |
95
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑠 ∈ ℝ ) |
97 |
94 96
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
98 |
93 97
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℝ ) |
99 |
98
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℂ ) |
100 |
7
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
101 |
100
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐶 ∈ ℂ ) |
102 |
99 101
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) ∈ ℂ ) |
103 |
|
2cnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → 2 ∈ ℂ ) |
104 |
95 92
|
sstrd |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
105 |
104
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑠 ∈ ℂ ) |
106 |
105
|
halfcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑠 / 2 ) ∈ ℂ ) |
107 |
106
|
sincld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → ( sin ‘ ( 𝑠 / 2 ) ) ∈ ℂ ) |
108 |
103 107
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ∈ ℂ ) |
109 |
|
2ne0 |
⊢ 2 ≠ 0 |
110 |
109
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → 2 ≠ 0 ) |
111 |
5
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑠 ∈ ( - π [,] π ) ) |
112 |
|
eqcom |
⊢ ( 𝑠 = 0 ↔ 0 = 𝑠 ) |
113 |
112
|
biimpi |
⊢ ( 𝑠 = 0 → 0 = 𝑠 ) |
114 |
113
|
adantl |
⊢ ( ( 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑠 = 0 ) → 0 = 𝑠 ) |
115 |
|
simpl |
⊢ ( ( 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑠 = 0 ) → 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) |
116 |
114 115
|
eqeltrd |
⊢ ( ( 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑠 = 0 ) → 0 ∈ ( 𝐴 [,] 𝐵 ) ) |
117 |
116
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑠 = 0 ) → 0 ∈ ( 𝐴 [,] 𝐵 ) ) |
118 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑠 = 0 ) → ¬ 0 ∈ ( 𝐴 [,] 𝐵 ) ) |
119 |
117 118
|
pm2.65da |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → ¬ 𝑠 = 0 ) |
120 |
119
|
neqned |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑠 ≠ 0 ) |
121 |
|
fourierdlem44 |
⊢ ( ( 𝑠 ∈ ( - π [,] π ) ∧ 𝑠 ≠ 0 ) → ( sin ‘ ( 𝑠 / 2 ) ) ≠ 0 ) |
122 |
111 120 121
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → ( sin ‘ ( 𝑠 / 2 ) ) ≠ 0 ) |
123 |
103 107 110 122
|
mulne0d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ≠ 0 ) |
124 |
102 108 123
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ∈ ℂ ) |
125 |
124 8
|
fmptd |
⊢ ( 𝜑 → 𝑂 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
126 |
|
ioossre |
⊢ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⊆ ℝ |
127 |
126
|
a1i |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⊆ ℝ ) |
128 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
129 |
128
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
130 |
128 129
|
dvres |
⊢ ( ( ( ℝ ⊆ ℂ ∧ 𝑂 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ ∧ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⊆ ℝ ) ) → ( ℝ D ( 𝑂 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( ( ℝ D 𝑂 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
131 |
92 125 95 127 130
|
syl22anc |
⊢ ( 𝜑 → ( ℝ D ( 𝑂 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( ( ℝ D 𝑂 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
132 |
|
ioontr |
⊢ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) |
133 |
132
|
reseq2i |
⊢ ( ( ℝ D 𝑂 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( ( ℝ D 𝑂 ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
134 |
131 133
|
eqtrdi |
⊢ ( 𝜑 → ( ℝ D ( 𝑂 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( ( ℝ D 𝑂 ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
135 |
134
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ℝ D ( 𝑂 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( ( ℝ D 𝑂 ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
136 |
90 135
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ℝ D 𝑂 ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) = ( ℝ D 𝑌 ) ) |
137 |
136
|
dmeqd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → dom ( ( ℝ D 𝑂 ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) = dom ( ℝ D 𝑌 ) ) |
138 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐹 : ℝ ⟶ ℝ ) |
139 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑋 ∈ ℝ ) |
140 |
95
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
141 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑆 : ( 0 ... 𝑁 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
142 |
|
elfzofz |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑁 ) → 𝑗 ∈ ( 0 ... 𝑁 ) ) |
143 |
142
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑗 ∈ ( 0 ... 𝑁 ) ) |
144 |
141 143
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ 𝑗 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
145 |
140 144
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ 𝑗 ) ∈ ℝ ) |
146 |
|
fzofzp1 |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑁 ) → ( 𝑗 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
147 |
146
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑗 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
148 |
141 147
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) |
149 |
140 148
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
150 |
9
|
feq2i |
⊢ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) : 𝐼 ⟶ ℝ ↔ ( ℝ D ( 𝐹 ↾ 𝐼 ) ) : ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ⟶ ℝ ) |
151 |
16 150
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ℝ D ( 𝐹 ↾ 𝐼 ) ) : ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ⟶ ℝ ) |
152 |
9
|
reseq2i |
⊢ ( 𝐹 ↾ 𝐼 ) = ( 𝐹 ↾ ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
153 |
152
|
oveq2i |
⊢ ( ℝ D ( 𝐹 ↾ 𝐼 ) ) = ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
154 |
153
|
feq1i |
⊢ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) : ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ⟶ ℝ ↔ ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) : ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ⟶ ℝ ) |
155 |
151 154
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) : ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ⟶ ℝ ) |
156 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ( - π [,] π ) ) |
157 |
86 156
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⊆ ( - π [,] π ) ) |
158 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ¬ 0 ∈ ( 𝐴 [,] 𝐵 ) ) |
159 |
86 158
|
ssneldd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ¬ 0 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
160 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐶 ∈ ℝ ) |
161 |
138 139 145 149 155 157 159 160 17
|
fourierdlem57 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ℝ D 𝑌 ) : ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⟶ ℝ ∧ ( ℝ D 𝑌 ) = ( 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ↦ ( ( ( ( ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) · ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) − ( ( cos ‘ ( 𝑠 / 2 ) ) · ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) ) ) / ( ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ↑ 2 ) ) ) ) ) ∧ ( ℝ D ( 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ↦ ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) = ( 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ↦ ( cos ‘ ( 𝑠 / 2 ) ) ) ) |
162 |
161
|
simpli |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ℝ D 𝑌 ) : ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⟶ ℝ ∧ ( ℝ D 𝑌 ) = ( 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ↦ ( ( ( ( ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) · ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) − ( ( cos ‘ ( 𝑠 / 2 ) ) · ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) ) ) / ( ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ↑ 2 ) ) ) ) ) |
163 |
162
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ℝ D 𝑌 ) : ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⟶ ℝ ) |
164 |
|
fdm |
⊢ ( ( ℝ D 𝑌 ) : ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⟶ ℝ → dom ( ℝ D 𝑌 ) = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
165 |
163 164
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → dom ( ℝ D 𝑌 ) = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
166 |
137 165
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) = dom ( ( ℝ D 𝑂 ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
167 |
|
resss |
⊢ ( ( ℝ D 𝑂 ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ⊆ ( ℝ D 𝑂 ) |
168 |
|
dmss |
⊢ ( ( ( ℝ D 𝑂 ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ⊆ ( ℝ D 𝑂 ) → dom ( ( ℝ D 𝑂 ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ⊆ dom ( ℝ D 𝑂 ) ) |
169 |
167 168
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → dom ( ( ℝ D 𝑂 ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ⊆ dom ( ℝ D 𝑂 ) ) |
170 |
166 169
|
eqsstrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⊆ dom ( ℝ D 𝑂 ) ) |
171 |
170
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⊆ dom ( ℝ D 𝑂 ) ) |
172 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
173 |
171 172
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → 𝑠 ∈ dom ( ℝ D 𝑂 ) ) |
174 |
83 173
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ∈ ℂ ) |
175 |
174
|
3exp |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 0 ..^ 𝑁 ) → ( 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) → ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ∈ ℂ ) ) ) |
176 |
175
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) → ( 𝑗 ∈ ( 0 ..^ 𝑁 ) → ( 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) → ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ∈ ℂ ) ) ) |
177 |
81 82 176
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) → ( ∃ 𝑗 ∈ ( 0 ..^ 𝑁 ) 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) → ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ∈ ℂ ) ) |
178 |
75 177
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) → ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ∈ ℂ ) |
179 |
68 178
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ∨ 𝑠 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) → ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ∈ ℂ ) |
180 |
45 63 179
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) → ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ∈ ℂ ) |
181 |
180
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) → ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ∈ ℝ ) |
182 |
44 181
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) → ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ∈ ℝ ) |
183 |
|
id |
⊢ ( 𝑟 ∈ ( { ( ran 𝑆 ∩ dom ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) → 𝑟 ∈ ( { ( ran 𝑆 ∩ dom ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
184 |
183 32
|
eleqtrdi |
⊢ ( 𝑟 ∈ ( { ( ran 𝑆 ∩ dom ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) → 𝑟 ∈ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
185 |
|
elsni |
⊢ ( 𝑟 ∈ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } → 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) |
186 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) → 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) |
187 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝑁 ) ∈ Fin ) |
188 |
|
rnffi |
⊢ ( ( 𝑆 : ( 0 ... 𝑁 ) ⟶ ( 𝐴 [,] 𝐵 ) ∧ ( 0 ... 𝑁 ) ∈ Fin ) → ran 𝑆 ∈ Fin ) |
189 |
12 187 188
|
syl2anc |
⊢ ( 𝜑 → ran 𝑆 ∈ Fin ) |
190 |
|
infi |
⊢ ( ran 𝑆 ∈ Fin → ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ∈ Fin ) |
191 |
189 190
|
syl |
⊢ ( 𝜑 → ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ∈ Fin ) |
192 |
191
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) → ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ∈ Fin ) |
193 |
186 192
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) → 𝑟 ∈ Fin ) |
194 |
|
nfv |
⊢ Ⅎ 𝑠 𝜑 |
195 |
|
nfcv |
⊢ Ⅎ 𝑠 ran 𝑆 |
196 |
|
nfcv |
⊢ Ⅎ 𝑠 ℝ |
197 |
|
nfcv |
⊢ Ⅎ 𝑠 D |
198 |
|
nfmpt1 |
⊢ Ⅎ 𝑠 ( 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) |
199 |
8 198
|
nfcxfr |
⊢ Ⅎ 𝑠 𝑂 |
200 |
196 197 199
|
nfov |
⊢ Ⅎ 𝑠 ( ℝ D 𝑂 ) |
201 |
200
|
nfdm |
⊢ Ⅎ 𝑠 dom ( ℝ D 𝑂 ) |
202 |
195 201
|
nfin |
⊢ Ⅎ 𝑠 ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) |
203 |
202
|
nfeq2 |
⊢ Ⅎ 𝑠 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) |
204 |
194 203
|
nfan |
⊢ Ⅎ 𝑠 ( 𝜑 ∧ 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) |
205 |
|
simpr |
⊢ ( ( 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ∧ 𝑠 ∈ 𝑟 ) → 𝑠 ∈ 𝑟 ) |
206 |
|
simpl |
⊢ ( ( 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ∧ 𝑠 ∈ 𝑟 ) → 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) |
207 |
205 206
|
eleqtrd |
⊢ ( ( 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ∧ 𝑠 ∈ 𝑟 ) → 𝑠 ∈ ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) |
208 |
207 66
|
syl |
⊢ ( ( 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ∧ 𝑠 ∈ 𝑟 ) → 𝑠 ∈ dom ( ℝ D 𝑂 ) ) |
209 |
208
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) ∧ 𝑠 ∈ 𝑟 ) → 𝑠 ∈ dom ( ℝ D 𝑂 ) ) |
210 |
64
|
ffvelrni |
⊢ ( 𝑠 ∈ dom ( ℝ D 𝑂 ) → ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ∈ ℂ ) |
211 |
210
|
abscld |
⊢ ( 𝑠 ∈ dom ( ℝ D 𝑂 ) → ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ∈ ℝ ) |
212 |
209 211
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) ∧ 𝑠 ∈ 𝑟 ) → ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ∈ ℝ ) |
213 |
212
|
ex |
⊢ ( ( 𝜑 ∧ 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) → ( 𝑠 ∈ 𝑟 → ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ∈ ℝ ) ) |
214 |
204 213
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) → ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ∈ ℝ ) |
215 |
|
fimaxre3 |
⊢ ( ( 𝑟 ∈ Fin ∧ ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) |
216 |
193 214 215
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) |
217 |
185 216
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) |
218 |
217
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ∧ 𝑟 ∈ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) |
219 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ∧ ¬ 𝑟 ∈ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ) → 𝜑 ) |
220 |
|
elunnel1 |
⊢ ( ( 𝑟 ∈ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ∧ ¬ 𝑟 ∈ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ) → 𝑟 ∈ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
221 |
220
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ∧ ¬ 𝑟 ∈ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ) → 𝑟 ∈ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
222 |
|
vex |
⊢ 𝑟 ∈ V |
223 |
35
|
elrnmpt |
⊢ ( 𝑟 ∈ V → ( 𝑟 ∈ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ↔ ∃ 𝑗 ∈ ( 0 ..^ 𝑁 ) 𝑟 = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
224 |
222 223
|
ax-mp |
⊢ ( 𝑟 ∈ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ↔ ∃ 𝑗 ∈ ( 0 ..^ 𝑁 ) 𝑟 = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
225 |
224
|
biimpi |
⊢ ( 𝑟 ∈ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → ∃ 𝑗 ∈ ( 0 ..^ 𝑁 ) 𝑟 = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
226 |
225
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) → ∃ 𝑗 ∈ ( 0 ..^ 𝑁 ) 𝑟 = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
227 |
78
|
nfcri |
⊢ Ⅎ 𝑗 𝑟 ∈ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
228 |
76 227
|
nfan |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑟 ∈ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
229 |
|
nfv |
⊢ Ⅎ 𝑗 ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 |
230 |
|
reeanv |
⊢ ( ∃ 𝑤 ∈ ℝ ∃ 𝑧 ∈ ℝ ( ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ↔ ( ∃ 𝑤 ∈ ℝ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) |
231 |
10 11 230
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ∃ 𝑤 ∈ ℝ ∃ 𝑧 ∈ ℝ ( ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) |
232 |
|
simp1 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ( ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) → ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ) |
233 |
|
simp2l |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ( ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) → 𝑤 ∈ ℝ ) |
234 |
|
simp2r |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ( ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) → 𝑧 ∈ ℝ ) |
235 |
232 233 234
|
jca31 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ( ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) → ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) ) |
236 |
|
simp3l |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ( ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) → ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ) |
237 |
|
simp3r |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ( ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) → ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
238 |
235 236 237
|
jca31 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ( ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) → ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ) ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) |
239 |
238 18
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ( ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) → 𝜒 ) |
240 |
18
|
biimpi |
⊢ ( 𝜒 → ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ) ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) |
241 |
|
simp-5l |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ) ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) → 𝜑 ) |
242 |
240 241
|
syl |
⊢ ( 𝜒 → 𝜑 ) |
243 |
242 1
|
syl |
⊢ ( 𝜒 → 𝐹 : ℝ ⟶ ℝ ) |
244 |
242 2
|
syl |
⊢ ( 𝜒 → 𝑋 ∈ ℝ ) |
245 |
|
simp-4l |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ) ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) → ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ) |
246 |
240 245
|
syl |
⊢ ( 𝜒 → ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ) |
247 |
246 145
|
syl |
⊢ ( 𝜒 → ( 𝑆 ‘ 𝑗 ) ∈ ℝ ) |
248 |
246 149
|
syl |
⊢ ( 𝜒 → ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
249 |
246 13
|
syl |
⊢ ( 𝜒 → ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) |
250 |
14 156
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) [,] ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⊆ ( - π [,] π ) ) |
251 |
246 250
|
syl |
⊢ ( 𝜒 → ( ( 𝑆 ‘ 𝑗 ) [,] ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⊆ ( - π [,] π ) ) |
252 |
14 158
|
ssneldd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ¬ 0 ∈ ( ( 𝑆 ‘ 𝑗 ) [,] ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
253 |
246 252
|
syl |
⊢ ( 𝜒 → ¬ 0 ∈ ( ( 𝑆 ‘ 𝑗 ) [,] ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
254 |
246 155
|
syl |
⊢ ( 𝜒 → ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) : ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ⟶ ℝ ) |
255 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ) ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) → 𝑤 ∈ ℝ ) |
256 |
240 255
|
syl |
⊢ ( 𝜒 → 𝑤 ∈ ℝ ) |
257 |
240
|
simplrd |
⊢ ( 𝜒 → ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ) |
258 |
|
id |
⊢ ( 𝑡 ∈ ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → 𝑡 ∈ ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
259 |
258 9
|
eleqtrrdi |
⊢ ( 𝑡 ∈ ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → 𝑡 ∈ 𝐼 ) |
260 |
|
rspa |
⊢ ( ( ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ∧ 𝑡 ∈ 𝐼 ) → ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ) |
261 |
257 259 260
|
syl2an |
⊢ ( ( 𝜒 ∧ 𝑡 ∈ ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) → ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ) |
262 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ) ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) → 𝑧 ∈ ℝ ) |
263 |
240 262
|
syl |
⊢ ( 𝜒 → 𝑧 ∈ ℝ ) |
264 |
153
|
fveq1i |
⊢ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) = ( ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ‘ 𝑡 ) |
265 |
264
|
fveq2i |
⊢ ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) = ( abs ‘ ( ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ‘ 𝑡 ) ) |
266 |
240
|
simprd |
⊢ ( 𝜒 → ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
267 |
266
|
r19.21bi |
⊢ ( ( 𝜒 ∧ 𝑡 ∈ 𝐼 ) → ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
268 |
265 267
|
eqbrtrrid |
⊢ ( ( 𝜒 ∧ 𝑡 ∈ 𝐼 ) → ( abs ‘ ( ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
269 |
259 268
|
sylan2 |
⊢ ( ( 𝜒 ∧ 𝑡 ∈ ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) → ( abs ‘ ( ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
270 |
242 7
|
syl |
⊢ ( 𝜒 → 𝐶 ∈ ℝ ) |
271 |
243 244 247 248 249 251 253 254 256 261 263 269 270 17
|
fourierdlem68 |
⊢ ( 𝜒 → ( dom ( ℝ D 𝑌 ) = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ dom ( ℝ D 𝑌 ) ( abs ‘ ( ( ℝ D 𝑌 ) ‘ 𝑠 ) ) ≤ 𝑦 ) ) |
272 |
271
|
simprd |
⊢ ( 𝜒 → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ dom ( ℝ D 𝑌 ) ( abs ‘ ( ( ℝ D 𝑌 ) ‘ 𝑠 ) ) ≤ 𝑦 ) |
273 |
271
|
simpld |
⊢ ( 𝜒 → dom ( ℝ D 𝑌 ) = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
274 |
273
|
raleqdv |
⊢ ( 𝜒 → ( ∀ 𝑠 ∈ dom ( ℝ D 𝑌 ) ( abs ‘ ( ( ℝ D 𝑌 ) ‘ 𝑠 ) ) ≤ 𝑦 ↔ ∀ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝑌 ) ‘ 𝑠 ) ) ≤ 𝑦 ) ) |
275 |
274
|
rexbidv |
⊢ ( 𝜒 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ dom ( ℝ D 𝑌 ) ( abs ‘ ( ( ℝ D 𝑌 ) ‘ 𝑠 ) ) ≤ 𝑦 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝑌 ) ‘ 𝑠 ) ) ≤ 𝑦 ) ) |
276 |
272 275
|
mpbid |
⊢ ( 𝜒 → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝑌 ) ‘ 𝑠 ) ) ≤ 𝑦 ) |
277 |
132
|
eqcomi |
⊢ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) = ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
278 |
277
|
reseq2i |
⊢ ( ( ℝ D 𝑂 ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) = ( ( ℝ D 𝑂 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
279 |
278
|
fveq1i |
⊢ ( ( ( ℝ D 𝑂 ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ‘ 𝑠 ) = ( ( ( ℝ D 𝑂 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ‘ 𝑠 ) |
280 |
|
fvres |
⊢ ( 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) → ( ( ( ℝ D 𝑂 ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ‘ 𝑠 ) = ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) |
281 |
280
|
adantl |
⊢ ( ( 𝜒 ∧ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → ( ( ( ℝ D 𝑂 ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ‘ 𝑠 ) = ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) |
282 |
246 86
|
syl |
⊢ ( 𝜒 → ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
283 |
282
|
resmptd |
⊢ ( 𝜒 → ( ( 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) |
284 |
84 283
|
syl5eq |
⊢ ( 𝜒 → ( 𝑂 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) |
285 |
17 284
|
eqtr4id |
⊢ ( 𝜒 → 𝑌 = ( 𝑂 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
286 |
285
|
oveq2d |
⊢ ( 𝜒 → ( ℝ D 𝑌 ) = ( ℝ D ( 𝑂 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
287 |
286
|
fveq1d |
⊢ ( 𝜒 → ( ( ℝ D 𝑌 ) ‘ 𝑠 ) = ( ( ℝ D ( 𝑂 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ‘ 𝑠 ) ) |
288 |
131
|
fveq1d |
⊢ ( 𝜑 → ( ( ℝ D ( 𝑂 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ‘ 𝑠 ) = ( ( ( ℝ D 𝑂 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ‘ 𝑠 ) ) |
289 |
242 288
|
syl |
⊢ ( 𝜒 → ( ( ℝ D ( 𝑂 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ‘ 𝑠 ) = ( ( ( ℝ D 𝑂 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ‘ 𝑠 ) ) |
290 |
287 289
|
eqtr2d |
⊢ ( 𝜒 → ( ( ( ℝ D 𝑂 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ‘ 𝑠 ) = ( ( ℝ D 𝑌 ) ‘ 𝑠 ) ) |
291 |
290
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → ( ( ( ℝ D 𝑂 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ‘ 𝑠 ) = ( ( ℝ D 𝑌 ) ‘ 𝑠 ) ) |
292 |
279 281 291
|
3eqtr3a |
⊢ ( ( 𝜒 ∧ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → ( ( ℝ D 𝑂 ) ‘ 𝑠 ) = ( ( ℝ D 𝑌 ) ‘ 𝑠 ) ) |
293 |
292
|
fveq2d |
⊢ ( ( 𝜒 ∧ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) = ( abs ‘ ( ( ℝ D 𝑌 ) ‘ 𝑠 ) ) ) |
294 |
293
|
breq1d |
⊢ ( ( 𝜒 ∧ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → ( ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ↔ ( abs ‘ ( ( ℝ D 𝑌 ) ‘ 𝑠 ) ) ≤ 𝑦 ) ) |
295 |
294
|
ralbidva |
⊢ ( 𝜒 → ( ∀ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ↔ ∀ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝑌 ) ‘ 𝑠 ) ) ≤ 𝑦 ) ) |
296 |
295
|
rexbidv |
⊢ ( 𝜒 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝑌 ) ‘ 𝑠 ) ) ≤ 𝑦 ) ) |
297 |
276 296
|
mpbird |
⊢ ( 𝜒 → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) |
298 |
239 297
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ( ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) |
299 |
298
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) ) ) |
300 |
299
|
rexlimdvv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ∃ 𝑤 ∈ ℝ ∃ 𝑧 ∈ ℝ ( ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) ) |
301 |
231 300
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) |
302 |
301
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑟 = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) |
303 |
|
raleq |
⊢ ( 𝑟 = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) → ( ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ↔ ∀ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) ) |
304 |
303
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑟 = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → ( ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ↔ ∀ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) ) |
305 |
304
|
rexbidv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑟 = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → ( ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) ) |
306 |
302 305
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑟 = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) |
307 |
306
|
3exp |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 0 ..^ 𝑁 ) → ( 𝑟 = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) ) ) |
308 |
307
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) → ( 𝑗 ∈ ( 0 ..^ 𝑁 ) → ( 𝑟 = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) ) ) |
309 |
228 229 308
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) → ( ∃ 𝑗 ∈ ( 0 ..^ 𝑁 ) 𝑟 = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) ) |
310 |
226 309
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) |
311 |
219 221 310
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ∧ ¬ 𝑟 ∈ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) |
312 |
218 311
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) |
313 |
184 312
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( { ( ran 𝑆 ∩ dom ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) |
314 |
|
pm3.22 |
⊢ ( ( 𝑟 ∈ dom ( ℝ D 𝑂 ) ∧ 𝑟 ∈ ran 𝑆 ) → ( 𝑟 ∈ ran 𝑆 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) ) |
315 |
|
elin |
⊢ ( 𝑟 ∈ ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ↔ ( 𝑟 ∈ ran 𝑆 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) ) |
316 |
314 315
|
sylibr |
⊢ ( ( 𝑟 ∈ dom ( ℝ D 𝑂 ) ∧ 𝑟 ∈ ran 𝑆 ) → 𝑟 ∈ ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) |
317 |
316
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) ∧ 𝑟 ∈ ran 𝑆 ) → 𝑟 ∈ ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) |
318 |
59
|
eqcomd |
⊢ ( 𝜑 → ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) = ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ) |
319 |
318
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) ∧ 𝑟 ∈ ran 𝑆 ) → ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) = ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ) |
320 |
317 319
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) ∧ 𝑟 ∈ ran 𝑆 ) → 𝑟 ∈ ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ) |
321 |
320
|
orcd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) ∧ 𝑟 ∈ ran 𝑆 ) → ( 𝑟 ∈ ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∨ 𝑟 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
322 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) ∧ ¬ 𝑟 ∈ ran 𝑆 ) → 𝜑 ) |
323 |
91
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) → ℝ ⊆ ℂ ) |
324 |
125
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) → 𝑂 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
325 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) → 𝐴 ∈ ℝ ) |
326 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) → 𝐵 ∈ ℝ ) |
327 |
325 326
|
iccssred |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
328 |
323 324 327
|
dvbss |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) → dom ( ℝ D 𝑂 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
329 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) → 𝑟 ∈ dom ( ℝ D 𝑂 ) ) |
330 |
328 329
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) → 𝑟 ∈ ( 𝐴 [,] 𝐵 ) ) |
331 |
330
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) ∧ ¬ 𝑟 ∈ ran 𝑆 ) → 𝑟 ∈ ( 𝐴 [,] 𝐵 ) ) |
332 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) ∧ ¬ 𝑟 ∈ ran 𝑆 ) → ¬ 𝑟 ∈ ran 𝑆 ) |
333 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝑆 ‘ 𝑗 ) = ( 𝑆 ‘ 𝑘 ) ) |
334 |
|
oveq1 |
⊢ ( 𝑗 = 𝑘 → ( 𝑗 + 1 ) = ( 𝑘 + 1 ) ) |
335 |
334
|
fveq2d |
⊢ ( 𝑗 = 𝑘 → ( 𝑆 ‘ ( 𝑗 + 1 ) ) = ( 𝑆 ‘ ( 𝑘 + 1 ) ) ) |
336 |
333 335
|
oveq12d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) = ( ( 𝑆 ‘ 𝑘 ) (,) ( 𝑆 ‘ ( 𝑘 + 1 ) ) ) ) |
337 |
|
ovex |
⊢ ( ( 𝑆 ‘ 𝑘 ) (,) ( 𝑆 ‘ ( 𝑘 + 1 ) ) ) ∈ V |
338 |
336 35 337
|
fvmpt |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → ( ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ‘ 𝑘 ) = ( ( 𝑆 ‘ 𝑘 ) (,) ( 𝑆 ‘ ( 𝑘 + 1 ) ) ) ) |
339 |
338
|
eleq2d |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → ( 𝑟 ∈ ( ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ‘ 𝑘 ) ↔ 𝑟 ∈ ( ( 𝑆 ‘ 𝑘 ) (,) ( 𝑆 ‘ ( 𝑘 + 1 ) ) ) ) ) |
340 |
339
|
rexbiia |
⊢ ( ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑟 ∈ ( ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ‘ 𝑘 ) ↔ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑟 ∈ ( ( 𝑆 ‘ 𝑘 ) (,) ( 𝑆 ‘ ( 𝑘 + 1 ) ) ) ) |
341 |
15 340
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑟 ∈ ran 𝑆 ) → ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑟 ∈ ( ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ‘ 𝑘 ) ) |
342 |
69 35
|
dmmpti |
⊢ dom ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) = ( 0 ..^ 𝑁 ) |
343 |
342
|
rexeqi |
⊢ ( ∃ 𝑘 ∈ dom ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) 𝑟 ∈ ( ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ‘ 𝑘 ) ↔ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑟 ∈ ( ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ‘ 𝑘 ) ) |
344 |
341 343
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑟 ∈ ran 𝑆 ) → ∃ 𝑘 ∈ dom ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) 𝑟 ∈ ( ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ‘ 𝑘 ) ) |
345 |
322 331 332 344
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) ∧ ¬ 𝑟 ∈ ran 𝑆 ) → ∃ 𝑘 ∈ dom ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) 𝑟 ∈ ( ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ‘ 𝑘 ) ) |
346 |
|
funmpt |
⊢ Fun ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
347 |
|
elunirn |
⊢ ( Fun ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → ( 𝑟 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ↔ ∃ 𝑘 ∈ dom ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) 𝑟 ∈ ( ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ‘ 𝑘 ) ) ) |
348 |
346 347
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) ∧ ¬ 𝑟 ∈ ran 𝑆 ) → ( 𝑟 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ↔ ∃ 𝑘 ∈ dom ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) 𝑟 ∈ ( ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ‘ 𝑘 ) ) ) |
349 |
345 348
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) ∧ ¬ 𝑟 ∈ ran 𝑆 ) → 𝑟 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
350 |
349
|
olcd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) ∧ ¬ 𝑟 ∈ ran 𝑆 ) → ( 𝑟 ∈ ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∨ 𝑟 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
351 |
321 350
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) → ( 𝑟 ∈ ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∨ 𝑟 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
352 |
|
elun |
⊢ ( 𝑟 ∈ ( ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ↔ ( 𝑟 ∈ ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∨ 𝑟 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
353 |
351 352
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) → 𝑟 ∈ ( ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
354 |
353 46
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) → 𝑟 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
355 |
354
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑟 ∈ dom ( ℝ D 𝑂 ) 𝑟 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
356 |
|
dfss3 |
⊢ ( dom ( ℝ D 𝑂 ) ⊆ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ↔ ∀ 𝑟 ∈ dom ( ℝ D 𝑂 ) 𝑟 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
357 |
355 356
|
sylibr |
⊢ ( 𝜑 → dom ( ℝ D 𝑂 ) ⊆ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
358 |
357 43
|
sseqtrrdi |
⊢ ( 𝜑 → dom ( ℝ D 𝑂 ) ⊆ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
359 |
41 182 313 358
|
ssfiunibd |
⊢ ( 𝜑 → ∃ 𝑏 ∈ ℝ ∀ 𝑠 ∈ dom ( ℝ D 𝑂 ) ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑏 ) |