Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem81.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
fourierdlem81.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
fourierdlem81.p |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
4 |
|
fourierdlem81.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
5 |
|
fourierdlem81.t |
⊢ ( 𝜑 → 𝑇 ∈ ℝ+ ) |
6 |
|
fourierdlem81.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
7 |
|
fourierdlem81.fper |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
8 |
|
fourierdlem81.s |
⊢ 𝑆 = ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ) |
9 |
|
fourierdlem81.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℂ ) |
10 |
|
fourierdlem81.cncf |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
11 |
|
fourierdlem81.r |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
12 |
|
fourierdlem81.l |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
13 |
|
fourierdlem81.g |
⊢ 𝐺 = ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
14 |
|
fourierdlem81.h |
⊢ 𝐻 = ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐺 ‘ ( 𝑥 − 𝑇 ) ) ) |
15 |
3
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
16 |
4 15
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
17 |
6 16
|
mpbid |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
18 |
17
|
simprd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
19 |
18
|
simpld |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ) |
20 |
19
|
simpld |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = 𝐴 ) |
21 |
20
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = ( 𝑄 ‘ 0 ) ) |
22 |
19
|
simprd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) = 𝐵 ) |
23 |
22
|
eqcomd |
⊢ ( 𝜑 → 𝐵 = ( 𝑄 ‘ 𝑀 ) ) |
24 |
21 23
|
oveq12d |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) = ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) |
25 |
24
|
itgeq1d |
⊢ ( 𝜑 → ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
26 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
27 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
28 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
29 |
28
|
fveq2i |
⊢ ( ℤ≥ ‘ ( 0 + 1 ) ) = ( ℤ≥ ‘ 1 ) |
30 |
27 29
|
eqtr4i |
⊢ ℕ = ( ℤ≥ ‘ ( 0 + 1 ) ) |
31 |
4 30
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ) |
32 |
17
|
simpld |
⊢ ( 𝜑 → 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
33 |
|
reex |
⊢ ℝ ∈ V |
34 |
33
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
35 |
|
ovex |
⊢ ( 0 ... 𝑀 ) ∈ V |
36 |
35
|
a1i |
⊢ ( 𝜑 → ( 0 ... 𝑀 ) ∈ V ) |
37 |
34 36
|
elmapd |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ↔ 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) ) |
38 |
32 37
|
mpbid |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
39 |
18
|
simprd |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
40 |
39
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
41 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) → 𝐹 : ℝ ⟶ ℂ ) |
42 |
20 1
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) ∈ ℝ ) |
43 |
22 2
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) ∈ ℝ ) |
44 |
42 43
|
iccssred |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ⊆ ℝ ) |
45 |
44
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) → 𝑥 ∈ ℝ ) |
46 |
41 45
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
47 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
48 |
|
elfzofz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
49 |
48
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
50 |
47 49
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
51 |
|
fzofzp1 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
52 |
51
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
53 |
47 52
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
54 |
9
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
55 |
54
|
reseq1d |
⊢ ( 𝜑 → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
57 |
|
ioossre |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ |
58 |
57
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
59 |
58
|
resmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
60 |
56 59
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
61 |
50 53 10 12 11
|
iblcncfioo |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ 𝐿1 ) |
62 |
60 61
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
63 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝐹 : ℝ ⟶ ℂ ) |
64 |
50 53
|
iccssred |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
65 |
64
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ ℝ ) |
66 |
63 65
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
67 |
50 53 62 66
|
ibliooicc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
68 |
26 31 38 40 46 67
|
itgspltprt |
⊢ ( 𝜑 → ∫ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = Σ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∫ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
69 |
8
|
a1i |
⊢ ( 𝜑 → 𝑆 = ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ) ) |
70 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 0 ) ) |
71 |
70
|
oveq1d |
⊢ ( 𝑖 = 0 → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) = ( ( 𝑄 ‘ 0 ) + 𝑇 ) ) |
72 |
71
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) = ( ( 𝑄 ‘ 0 ) + 𝑇 ) ) |
73 |
4
|
nnnn0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
74 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
75 |
73 74
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
76 |
|
eluzfz1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → 0 ∈ ( 0 ... 𝑀 ) ) |
77 |
75 76
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑀 ) ) |
78 |
5
|
rpred |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
79 |
42 78
|
readdcld |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 0 ) + 𝑇 ) ∈ ℝ ) |
80 |
69 72 77 79
|
fvmptd |
⊢ ( 𝜑 → ( 𝑆 ‘ 0 ) = ( ( 𝑄 ‘ 0 ) + 𝑇 ) ) |
81 |
20
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 0 ) + 𝑇 ) = ( 𝐴 + 𝑇 ) ) |
82 |
80 81
|
eqtr2d |
⊢ ( 𝜑 → ( 𝐴 + 𝑇 ) = ( 𝑆 ‘ 0 ) ) |
83 |
|
fveq2 |
⊢ ( 𝑖 = 𝑀 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑀 ) ) |
84 |
83
|
oveq1d |
⊢ ( 𝑖 = 𝑀 → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) = ( ( 𝑄 ‘ 𝑀 ) + 𝑇 ) ) |
85 |
84
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 = 𝑀 ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) = ( ( 𝑄 ‘ 𝑀 ) + 𝑇 ) ) |
86 |
|
eluzfz2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
87 |
75 86
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
88 |
43 78
|
readdcld |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑀 ) + 𝑇 ) ∈ ℝ ) |
89 |
69 85 87 88
|
fvmptd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑀 ) = ( ( 𝑄 ‘ 𝑀 ) + 𝑇 ) ) |
90 |
22
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑀 ) + 𝑇 ) = ( 𝐵 + 𝑇 ) ) |
91 |
89 90
|
eqtr2d |
⊢ ( 𝜑 → ( 𝐵 + 𝑇 ) = ( 𝑆 ‘ 𝑀 ) ) |
92 |
82 91
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) = ( ( 𝑆 ‘ 0 ) [,] ( 𝑆 ‘ 𝑀 ) ) ) |
93 |
92
|
itgeq1d |
⊢ ( 𝜑 → ∫ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( ( 𝑆 ‘ 0 ) [,] ( 𝑆 ‘ 𝑀 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
94 |
38
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
95 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝑇 ∈ ℝ ) |
96 |
94 95
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ∈ ℝ ) |
97 |
96 8
|
fmptd |
⊢ ( 𝜑 → 𝑆 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
98 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑇 ∈ ℝ ) |
99 |
50 53 98 40
|
ltadd1dd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) < ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) |
100 |
48 96
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ∈ ℝ ) |
101 |
8
|
fvmpt2 |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ∈ ℝ ) → ( 𝑆 ‘ 𝑖 ) = ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ) |
102 |
49 100 101
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 ‘ 𝑖 ) = ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ) |
103 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑗 ) ) |
104 |
103
|
oveq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) = ( ( 𝑄 ‘ 𝑗 ) + 𝑇 ) ) |
105 |
104
|
cbvmptv |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ) = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑗 ) + 𝑇 ) ) |
106 |
8 105
|
eqtri |
⊢ 𝑆 = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑗 ) + 𝑇 ) ) |
107 |
106
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑆 = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑗 ) + 𝑇 ) ) ) |
108 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝑖 + 1 ) → ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
109 |
108
|
oveq1d |
⊢ ( 𝑗 = ( 𝑖 + 1 ) → ( ( 𝑄 ‘ 𝑗 ) + 𝑇 ) = ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) |
110 |
109
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 = ( 𝑖 + 1 ) ) → ( ( 𝑄 ‘ 𝑗 ) + 𝑇 ) = ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) |
111 |
53 98
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ∈ ℝ ) |
112 |
107 110 52 111
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 ‘ ( 𝑖 + 1 ) ) = ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) |
113 |
99 102 112
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) |
114 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑆 ‘ 0 ) [,] ( 𝑆 ‘ 𝑀 ) ) ) → 𝐹 : ℝ ⟶ ℂ ) |
115 |
80 79
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑆 ‘ 0 ) ∈ ℝ ) |
116 |
115
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑆 ‘ 0 ) [,] ( 𝑆 ‘ 𝑀 ) ) ) → ( 𝑆 ‘ 0 ) ∈ ℝ ) |
117 |
89 88
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑀 ) ∈ ℝ ) |
118 |
117
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑆 ‘ 0 ) [,] ( 𝑆 ‘ 𝑀 ) ) ) → ( 𝑆 ‘ 𝑀 ) ∈ ℝ ) |
119 |
116 118
|
iccssred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑆 ‘ 0 ) [,] ( 𝑆 ‘ 𝑀 ) ) ) → ( ( 𝑆 ‘ 0 ) [,] ( 𝑆 ‘ 𝑀 ) ) ⊆ ℝ ) |
120 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑆 ‘ 0 ) [,] ( 𝑆 ‘ 𝑀 ) ) ) → 𝑥 ∈ ( ( 𝑆 ‘ 0 ) [,] ( 𝑆 ‘ 𝑀 ) ) ) |
121 |
119 120
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑆 ‘ 0 ) [,] ( 𝑆 ‘ 𝑀 ) ) ) → 𝑥 ∈ ℝ ) |
122 |
114 121
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑆 ‘ 0 ) [,] ( 𝑆 ‘ 𝑀 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
123 |
102 100
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 ‘ 𝑖 ) ∈ ℝ ) |
124 |
112 111
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
125 |
|
ioosscn |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ |
126 |
125
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ ) |
127 |
|
eqeq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 = ( 𝑧 + 𝑇 ) ↔ 𝑥 = ( 𝑧 + 𝑇 ) ) ) |
128 |
127
|
rexbidv |
⊢ ( 𝑤 = 𝑥 → ( ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) ↔ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑧 + 𝑇 ) ) ) |
129 |
|
oveq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 + 𝑇 ) = ( 𝑦 + 𝑇 ) ) |
130 |
129
|
eqeq2d |
⊢ ( 𝑧 = 𝑦 → ( 𝑥 = ( 𝑧 + 𝑇 ) ↔ 𝑥 = ( 𝑦 + 𝑇 ) ) ) |
131 |
130
|
cbvrexvw |
⊢ ( ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑧 + 𝑇 ) ↔ ∃ 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑦 + 𝑇 ) ) |
132 |
128 131
|
bitrdi |
⊢ ( 𝑤 = 𝑥 → ( ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) ↔ ∃ 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑦 + 𝑇 ) ) ) |
133 |
132
|
cbvrabv |
⊢ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } = { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑦 + 𝑇 ) } |
134 |
|
fdm |
⊢ ( 𝐹 : ℝ ⟶ ℂ → dom 𝐹 = ℝ ) |
135 |
9 134
|
syl |
⊢ ( 𝜑 → dom 𝐹 = ℝ ) |
136 |
135
|
feq2d |
⊢ ( 𝜑 → ( 𝐹 : dom 𝐹 ⟶ ℂ ↔ 𝐹 : ℝ ⟶ ℂ ) ) |
137 |
9 136
|
mpbird |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ℂ ) |
138 |
137
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
139 |
|
elioore |
⊢ ( 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → 𝑧 ∈ ℝ ) |
140 |
139
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑧 ∈ ℝ ) |
141 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑇 ∈ ℝ ) |
142 |
140 141
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑧 + 𝑇 ) ∈ ℝ ) |
143 |
142
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑧 + 𝑇 ) ∈ ℝ ) |
144 |
143
|
3adant3 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑤 = ( 𝑧 + 𝑇 ) ) → ( 𝑧 + 𝑇 ) ∈ ℝ ) |
145 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑤 = ( 𝑧 + 𝑇 ) ) → 𝑤 = ( 𝑧 + 𝑇 ) ) |
146 |
135
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑤 = ( 𝑧 + 𝑇 ) ) → dom 𝐹 = ℝ ) |
147 |
146
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑤 = ( 𝑧 + 𝑇 ) ) → dom 𝐹 = ℝ ) |
148 |
144 145 147
|
3eltr4d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑤 = ( 𝑧 + 𝑇 ) ) → 𝑤 ∈ dom 𝐹 ) |
149 |
148
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑤 = ( 𝑧 + 𝑇 ) → 𝑤 ∈ dom 𝐹 ) ) ) |
150 |
149
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑤 ∈ ℂ ) → ( 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑤 = ( 𝑧 + 𝑇 ) → 𝑤 ∈ dom 𝐹 ) ) ) |
151 |
150
|
rexlimdv |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑤 ∈ ℂ ) → ( ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) → 𝑤 ∈ dom 𝐹 ) ) |
152 |
151
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∀ 𝑤 ∈ ℂ ( ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) → 𝑤 ∈ dom 𝐹 ) ) |
153 |
|
rabss |
⊢ ( { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ⊆ dom 𝐹 ↔ ∀ 𝑤 ∈ ℂ ( ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) → 𝑤 ∈ dom 𝐹 ) ) |
154 |
152 153
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ⊆ dom 𝐹 ) |
155 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝜑 ) |
156 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
157 |
156
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝐴 ∈ ℝ* ) |
158 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
159 |
158
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝐵 ∈ ℝ* ) |
160 |
3 4 6
|
fourierdlem15 |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
161 |
160
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
162 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
163 |
|
ioossicc |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
164 |
163
|
sseli |
⊢ ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
165 |
164
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
166 |
157 159 161 162 165
|
fourierdlem1 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
167 |
155 166 7
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
168 |
126 98 133 138 154 167 10
|
cncfperiod |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) ∈ ( { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } –cn→ ℂ ) ) |
169 |
128
|
elrab |
⊢ ( 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ↔ ( 𝑥 ∈ ℂ ∧ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑧 + 𝑇 ) ) ) |
170 |
169
|
simprbi |
⊢ ( 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } → ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑧 + 𝑇 ) ) |
171 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑧 + 𝑇 ) ) → ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑧 + 𝑇 ) ) |
172 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
173 |
|
nfre1 |
⊢ Ⅎ 𝑧 ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑧 + 𝑇 ) |
174 |
172 173
|
nfan |
⊢ Ⅎ 𝑧 ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑧 + 𝑇 ) ) |
175 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝑥 ∈ ℝ ∧ ( 𝑆 ‘ 𝑖 ) < 𝑥 ∧ 𝑥 < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) |
176 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑥 = ( 𝑧 + 𝑇 ) ) → 𝑥 = ( 𝑧 + 𝑇 ) ) |
177 |
142
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑥 = ( 𝑧 + 𝑇 ) ) → ( 𝑧 + 𝑇 ) ∈ ℝ ) |
178 |
176 177
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑥 = ( 𝑧 + 𝑇 ) ) → 𝑥 ∈ ℝ ) |
179 |
178
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑥 = ( 𝑧 + 𝑇 ) ) → 𝑥 ∈ ℝ ) |
180 |
50
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
181 |
139
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑧 ∈ ℝ ) |
182 |
78
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑇 ∈ ℝ ) |
183 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
184 |
50
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
185 |
184
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
186 |
53
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
187 |
186
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
188 |
|
elioo2 |
⊢ ( ( ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) → ( 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝑄 ‘ 𝑖 ) < 𝑧 ∧ 𝑧 < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
189 |
185 187 188
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝑄 ‘ 𝑖 ) < 𝑧 ∧ 𝑧 < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
190 |
183 189
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑧 ∈ ℝ ∧ ( 𝑄 ‘ 𝑖 ) < 𝑧 ∧ 𝑧 < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
191 |
190
|
simp2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) < 𝑧 ) |
192 |
180 181 182 191
|
ltadd1dd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) < ( 𝑧 + 𝑇 ) ) |
193 |
192
|
3adant3 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑥 = ( 𝑧 + 𝑇 ) ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) < ( 𝑧 + 𝑇 ) ) |
194 |
102
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑥 = ( 𝑧 + 𝑇 ) ) → ( 𝑆 ‘ 𝑖 ) = ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ) |
195 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑥 = ( 𝑧 + 𝑇 ) ) → 𝑥 = ( 𝑧 + 𝑇 ) ) |
196 |
193 194 195
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑥 = ( 𝑧 + 𝑇 ) ) → ( 𝑆 ‘ 𝑖 ) < 𝑥 ) |
197 |
53
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
198 |
190
|
simp3d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑧 < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
199 |
181 197 182 198
|
ltadd1dd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑧 + 𝑇 ) < ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) |
200 |
199
|
3adant3 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑥 = ( 𝑧 + 𝑇 ) ) → ( 𝑧 + 𝑇 ) < ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) |
201 |
112
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑥 = ( 𝑧 + 𝑇 ) ) → ( 𝑆 ‘ ( 𝑖 + 1 ) ) = ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) |
202 |
200 195 201
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑥 = ( 𝑧 + 𝑇 ) ) → 𝑥 < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) |
203 |
179 196 202
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑥 = ( 𝑧 + 𝑇 ) ) → ( 𝑥 ∈ ℝ ∧ ( 𝑆 ‘ 𝑖 ) < 𝑥 ∧ 𝑥 < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) |
204 |
203
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑥 = ( 𝑧 + 𝑇 ) → ( 𝑥 ∈ ℝ ∧ ( 𝑆 ‘ 𝑖 ) < 𝑥 ∧ 𝑥 < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
205 |
204
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑧 + 𝑇 ) ) → ( 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑥 = ( 𝑧 + 𝑇 ) → ( 𝑥 ∈ ℝ ∧ ( 𝑆 ‘ 𝑖 ) < 𝑥 ∧ 𝑥 < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
206 |
174 175 205
|
rexlimd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑧 + 𝑇 ) ) → ( ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑧 + 𝑇 ) → ( 𝑥 ∈ ℝ ∧ ( 𝑆 ‘ 𝑖 ) < 𝑥 ∧ 𝑥 < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ) |
207 |
171 206
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑧 + 𝑇 ) ) → ( 𝑥 ∈ ℝ ∧ ( 𝑆 ‘ 𝑖 ) < 𝑥 ∧ 𝑥 < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) |
208 |
123
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 ‘ 𝑖 ) ∈ ℝ* ) |
209 |
208
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑧 + 𝑇 ) ) → ( 𝑆 ‘ 𝑖 ) ∈ ℝ* ) |
210 |
124
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
211 |
210
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑧 + 𝑇 ) ) → ( 𝑆 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
212 |
|
elioo2 |
⊢ ( ( ( 𝑆 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝑆 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) → ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝑆 ‘ 𝑖 ) < 𝑥 ∧ 𝑥 < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ) |
213 |
209 211 212
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑧 + 𝑇 ) ) → ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝑆 ‘ 𝑖 ) < 𝑥 ∧ 𝑥 < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ) |
214 |
207 213
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑧 + 𝑇 ) ) → 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) |
215 |
170 214
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) → 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) |
216 |
|
elioore |
⊢ ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → 𝑥 ∈ ℝ ) |
217 |
216
|
recnd |
⊢ ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → 𝑥 ∈ ℂ ) |
218 |
217
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ ℂ ) |
219 |
184
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
220 |
186
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
221 |
216
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ ℝ ) |
222 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑇 ∈ ℝ ) |
223 |
221 222
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑥 − 𝑇 ) ∈ ℝ ) |
224 |
223
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑥 − 𝑇 ) ∈ ℝ ) |
225 |
102
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 ‘ 𝑖 ) − 𝑇 ) = ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) − 𝑇 ) ) |
226 |
50
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℂ ) |
227 |
98
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑇 ∈ ℂ ) |
228 |
226 227
|
pncand |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) − 𝑇 ) = ( 𝑄 ‘ 𝑖 ) ) |
229 |
225 228
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) = ( ( 𝑆 ‘ 𝑖 ) − 𝑇 ) ) |
230 |
229
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) = ( ( 𝑆 ‘ 𝑖 ) − 𝑇 ) ) |
231 |
123
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑆 ‘ 𝑖 ) ∈ ℝ ) |
232 |
216
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ ℝ ) |
233 |
78
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑇 ∈ ℝ ) |
234 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) |
235 |
208
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑆 ‘ 𝑖 ) ∈ ℝ* ) |
236 |
210
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑆 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
237 |
235 236 212
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝑆 ‘ 𝑖 ) < 𝑥 ∧ 𝑥 < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ) |
238 |
234 237
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑥 ∈ ℝ ∧ ( 𝑆 ‘ 𝑖 ) < 𝑥 ∧ 𝑥 < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) |
239 |
238
|
simp2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑆 ‘ 𝑖 ) < 𝑥 ) |
240 |
231 232 233 239
|
ltsub1dd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝑆 ‘ 𝑖 ) − 𝑇 ) < ( 𝑥 − 𝑇 ) ) |
241 |
230 240
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑥 − 𝑇 ) ) |
242 |
124
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑆 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
243 |
238
|
simp3d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) |
244 |
232 242 233 243
|
ltsub1dd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑥 − 𝑇 ) < ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) ) |
245 |
112
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) = ( ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) − 𝑇 ) ) |
246 |
53
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℂ ) |
247 |
246 227
|
pncand |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
248 |
245 247
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
249 |
248
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
250 |
244 249
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑥 − 𝑇 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
251 |
219 220 224 241 250
|
eliood |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑥 − 𝑇 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
252 |
221
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ ℂ ) |
253 |
222
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑇 ∈ ℂ ) |
254 |
252 253
|
npcand |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝑥 − 𝑇 ) + 𝑇 ) = 𝑥 ) |
255 |
254
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 = ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) |
256 |
255
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 = ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) |
257 |
|
oveq1 |
⊢ ( 𝑧 = ( 𝑥 − 𝑇 ) → ( 𝑧 + 𝑇 ) = ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) |
258 |
257
|
eqeq2d |
⊢ ( 𝑧 = ( 𝑥 − 𝑇 ) → ( 𝑥 = ( 𝑧 + 𝑇 ) ↔ 𝑥 = ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) ) |
259 |
258
|
rspcev |
⊢ ( ( ( 𝑥 − 𝑇 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑥 = ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) → ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑧 + 𝑇 ) ) |
260 |
251 256 259
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑧 + 𝑇 ) ) |
261 |
218 260 169
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) |
262 |
215 261
|
impbida |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ↔ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ) |
263 |
262
|
eqrdv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } = ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) |
264 |
263
|
reseq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) = ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ) |
265 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐹 : ℝ ⟶ ℂ ) |
266 |
|
ioossre |
⊢ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ |
267 |
266
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
268 |
265 267
|
feqresmpt |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
269 |
264 268
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) = ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
270 |
263
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } –cn→ ℂ ) = ( ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
271 |
168 269 270
|
3eltr3d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
272 |
57 135
|
sseqtrrid |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom 𝐹 ) |
273 |
272
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom 𝐹 ) |
274 |
|
eqid |
⊢ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } = { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } |
275 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝜑 ) |
276 |
156
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝐴 ∈ ℝ* ) |
277 |
158
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝐵 ∈ ℝ* ) |
278 |
160
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
279 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
280 |
163 183
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
281 |
276 277 278 279 280
|
fourierdlem1 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) |
282 |
|
eleq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
283 |
282
|
anbi2d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ↔ ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) ) |
284 |
|
oveq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 + 𝑇 ) = ( 𝑧 + 𝑇 ) ) |
285 |
284
|
fveq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑧 + 𝑇 ) ) ) |
286 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) |
287 |
285 286
|
eqeq12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ ( 𝑧 + 𝑇 ) ) = ( 𝐹 ‘ 𝑧 ) ) ) |
288 |
283 287
|
imbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( 𝑧 + 𝑇 ) ) = ( 𝐹 ‘ 𝑧 ) ) ) ) |
289 |
288 7
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( 𝑧 + 𝑇 ) ) = ( 𝐹 ‘ 𝑧 ) ) |
290 |
275 281 289
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐹 ‘ ( 𝑧 + 𝑇 ) ) = ( 𝐹 ‘ 𝑧 ) ) |
291 |
138 126 273 227 274 154 290 12
|
limcperiod |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) limℂ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) |
292 |
112
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) |
293 |
269 292
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) limℂ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) = ( ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) limℂ ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) |
294 |
291 293
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) limℂ ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) |
295 |
138 126 273 227 274 154 290 11
|
limcperiod |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) limℂ ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ) ) |
296 |
102
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) = ( 𝑆 ‘ 𝑖 ) ) |
297 |
269 296
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) limℂ ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ) = ( ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) limℂ ( 𝑆 ‘ 𝑖 ) ) ) |
298 |
295 297
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) limℂ ( 𝑆 ‘ 𝑖 ) ) ) |
299 |
123 124 271 294 298
|
iblcncfioo |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
300 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → 𝐹 : ℝ ⟶ ℂ ) |
301 |
123
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑆 ‘ 𝑖 ) ∈ ℝ ) |
302 |
124
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑆 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
303 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) |
304 |
|
eliccre |
⊢ ( ( ( 𝑆 ‘ 𝑖 ) ∈ ℝ ∧ ( 𝑆 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ ℝ ) |
305 |
301 302 303 304
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ ℝ ) |
306 |
300 305
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
307 |
123 124 299 306
|
ibliooicc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
308 |
26 31 97 113 122 307
|
itgspltprt |
⊢ ( 𝜑 → ∫ ( ( 𝑆 ‘ 0 ) [,] ( 𝑆 ‘ 𝑀 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = Σ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∫ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
309 |
|
iftrue |
⊢ ( 𝑥 = ( 𝑆 ‘ 𝑖 ) → if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) = 𝑅 ) |
310 |
309
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) → if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) = 𝑅 ) |
311 |
|
iftrue |
⊢ ( 𝑥 = ( 𝑄 ‘ 𝑖 ) → if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = 𝑅 ) |
312 |
|
iftrue |
⊢ ( 𝑥 = ( 𝑄 ‘ 𝑖 ) → if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) = 𝑅 ) |
313 |
311 312
|
eqtr4d |
⊢ ( 𝑥 = ( 𝑄 ‘ 𝑖 ) → if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ) |
314 |
313
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑥 = ( 𝑄 ‘ 𝑖 ) ) → if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ) |
315 |
|
iffalse |
⊢ ( ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) → if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) |
316 |
315
|
adantr |
⊢ ( ( ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) ∧ 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) |
317 |
|
iftrue |
⊢ ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) → if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) = 𝐿 ) |
318 |
317
|
adantl |
⊢ ( ( ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) ∧ 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) = 𝐿 ) |
319 |
|
iffalse |
⊢ ( ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) → if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) = if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) |
320 |
319
|
adantr |
⊢ ( ( ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) ∧ 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) = if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) |
321 |
|
iftrue |
⊢ ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) → if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) = 𝐿 ) |
322 |
321
|
adantl |
⊢ ( ( ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) ∧ 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) = 𝐿 ) |
323 |
320 322
|
eqtr2d |
⊢ ( ( ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) ∧ 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → 𝐿 = if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ) |
324 |
316 318 323
|
3eqtrd |
⊢ ( ( ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) ∧ 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ) |
325 |
324
|
adantll |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) ) ∧ 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ) |
326 |
315
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) |
327 |
|
iffalse |
⊢ ( ¬ 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) → if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
328 |
327
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
329 |
319
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) = if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) |
330 |
|
iffalse |
⊢ ( ¬ 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) → if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) |
331 |
330
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) |
332 |
184
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
333 |
186
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
334 |
65
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → 𝑥 ∈ ℝ ) |
335 |
50
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
336 |
65
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) ) → 𝑥 ∈ ℝ ) |
337 |
184
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
338 |
186
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
339 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) ) → 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
340 |
|
iccgelb |
⊢ ( ( ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) ≤ 𝑥 ) |
341 |
337 338 339 340
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) ) → ( 𝑄 ‘ 𝑖 ) ≤ 𝑥 ) |
342 |
|
neqne |
⊢ ( ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) → 𝑥 ≠ ( 𝑄 ‘ 𝑖 ) ) |
343 |
342
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) ) → 𝑥 ≠ ( 𝑄 ‘ 𝑖 ) ) |
344 |
335 336 341 343
|
leneltd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) ) → ( 𝑄 ‘ 𝑖 ) < 𝑥 ) |
345 |
344
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑄 ‘ 𝑖 ) < 𝑥 ) |
346 |
53
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
347 |
184
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
348 |
186
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
349 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
350 |
|
iccleub |
⊢ ( ( ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ≤ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
351 |
347 348 349 350
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ≤ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
352 |
351
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → 𝑥 ≤ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
353 |
|
neqne |
⊢ ( ¬ 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) → 𝑥 ≠ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
354 |
353
|
necomd |
⊢ ( ¬ 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ≠ 𝑥 ) |
355 |
354
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ≠ 𝑥 ) |
356 |
334 346 352 355
|
leneltd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → 𝑥 < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
357 |
332 333 334 345 356
|
eliood |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
358 |
|
fvres |
⊢ ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
359 |
357 358
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
360 |
329 331 359
|
3eqtrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ) |
361 |
326 328 360
|
3eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ) |
362 |
325 361
|
pm2.61dan |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝑖 ) ) → if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ) |
363 |
314 362
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ) |
364 |
363
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ) ) |
365 |
13 364
|
syl5eq |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐺 = ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ) ) |
366 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 = ( 𝑄 ‘ 𝑖 ) ↔ 𝑤 = ( 𝑄 ‘ 𝑖 ) ) ) |
367 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ↔ 𝑤 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
368 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑤 ) ) |
369 |
367 368
|
ifbieq2d |
⊢ ( 𝑥 = 𝑤 → if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) = if ( 𝑤 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑤 ) ) ) |
370 |
366 369
|
ifbieq2d |
⊢ ( 𝑥 = 𝑤 → if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) = if ( 𝑤 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑤 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑤 ) ) ) ) |
371 |
370
|
cbvmptv |
⊢ ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ) = ( 𝑤 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑤 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑤 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑤 ) ) ) ) |
372 |
365 371
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐺 = ( 𝑤 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑤 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑤 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑤 ) ) ) ) ) |
373 |
372
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) → 𝐺 = ( 𝑤 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑤 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑤 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑤 ) ) ) ) ) |
374 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ 𝑤 = ( 𝑥 − 𝑇 ) ) → 𝑤 = ( 𝑥 − 𝑇 ) ) |
375 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑆 ‘ 𝑖 ) → ( 𝑥 − 𝑇 ) = ( ( 𝑆 ‘ 𝑖 ) − 𝑇 ) ) |
376 |
375
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ 𝑤 = ( 𝑥 − 𝑇 ) ) → ( 𝑥 − 𝑇 ) = ( ( 𝑆 ‘ 𝑖 ) − 𝑇 ) ) |
377 |
229
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 ‘ 𝑖 ) − 𝑇 ) = ( 𝑄 ‘ 𝑖 ) ) |
378 |
377
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ 𝑤 = ( 𝑥 − 𝑇 ) ) → ( ( 𝑆 ‘ 𝑖 ) − 𝑇 ) = ( 𝑄 ‘ 𝑖 ) ) |
379 |
374 376 378
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ 𝑤 = ( 𝑥 − 𝑇 ) ) → 𝑤 = ( 𝑄 ‘ 𝑖 ) ) |
380 |
379
|
iftrued |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ 𝑤 = ( 𝑥 − 𝑇 ) ) → if ( 𝑤 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑤 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑤 ) ) ) = 𝑅 ) |
381 |
375
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) → ( 𝑥 − 𝑇 ) = ( ( 𝑆 ‘ 𝑖 ) − 𝑇 ) ) |
382 |
50 53 40
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
383 |
|
lbicc2 |
⊢ ( ( ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ∧ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
384 |
184 186 382 383
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
385 |
377 384
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 ‘ 𝑖 ) − 𝑇 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
386 |
385
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) → ( ( 𝑆 ‘ 𝑖 ) − 𝑇 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
387 |
381 386
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) → ( 𝑥 − 𝑇 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
388 |
|
limccl |
⊢ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ⊆ ℂ |
389 |
388 11
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ℂ ) |
390 |
389
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) → 𝑅 ∈ ℂ ) |
391 |
373 380 387 390
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) → ( 𝐺 ‘ ( 𝑥 − 𝑇 ) ) = 𝑅 ) |
392 |
310 391
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) → if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) = ( 𝐺 ‘ ( 𝑥 − 𝑇 ) ) ) |
393 |
392
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) → if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) = ( 𝐺 ‘ ( 𝑥 − 𝑇 ) ) ) |
394 |
|
iffalse |
⊢ ( ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) → if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) = if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) |
395 |
394
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) → if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) = if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) |
396 |
372
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → 𝐺 = ( 𝑤 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑤 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑤 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑤 ) ) ) ) ) |
397 |
|
eqeq1 |
⊢ ( 𝑤 = ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) → ( 𝑤 = ( 𝑄 ‘ 𝑖 ) ↔ ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) = ( 𝑄 ‘ 𝑖 ) ) ) |
398 |
|
eqeq1 |
⊢ ( 𝑤 = ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) → ( 𝑤 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ↔ ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
399 |
|
fveq2 |
⊢ ( 𝑤 = ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑤 ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) ) ) |
400 |
398 399
|
ifbieq2d |
⊢ ( 𝑤 = ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) → if ( 𝑤 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑤 ) ) = if ( ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) ) ) ) |
401 |
397 400
|
ifbieq2d |
⊢ ( 𝑤 = ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) → if ( 𝑤 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑤 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑤 ) ) ) = if ( ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) ) ) ) ) |
402 |
401
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑤 = ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) ) → if ( 𝑤 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑤 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑤 ) ) ) = if ( ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) ) ) ) ) |
403 |
|
eqeq1 |
⊢ ( ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) → ( ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) = ( 𝑄 ‘ 𝑖 ) ↔ ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑄 ‘ 𝑖 ) ) ) |
404 |
|
iftrue |
⊢ ( ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) → if ( ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) ) ) = 𝐿 ) |
405 |
403 404
|
ifbieq2d |
⊢ ( ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) → if ( ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) ) ) ) = if ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑄 ‘ 𝑖 ) , 𝑅 , 𝐿 ) ) |
406 |
248 405
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → if ( ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) ) ) ) = if ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑄 ‘ 𝑖 ) , 𝑅 , 𝐿 ) ) |
407 |
406
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑤 = ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) ) → if ( ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) ) ) ) = if ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑄 ‘ 𝑖 ) , 𝑅 , 𝐿 ) ) |
408 |
50 40
|
gtned |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ≠ ( 𝑄 ‘ 𝑖 ) ) |
409 |
408
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ¬ ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑄 ‘ 𝑖 ) ) |
410 |
409
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → if ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑄 ‘ 𝑖 ) , 𝑅 , 𝐿 ) = 𝐿 ) |
411 |
410
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑤 = ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) ) → if ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑄 ‘ 𝑖 ) , 𝑅 , 𝐿 ) = 𝐿 ) |
412 |
402 407 411
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑤 = ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) ) → if ( 𝑤 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑤 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑤 ) ) ) = 𝐿 ) |
413 |
412
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑤 = ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) ) → if ( 𝑤 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑤 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑤 ) ) ) = 𝐿 ) |
414 |
|
ubicc2 |
⊢ ( ( ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ∧ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
415 |
184 186 382 414
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
416 |
248 415
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
417 |
416
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
418 |
|
limccl |
⊢ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ |
419 |
418 12
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ℂ ) |
420 |
419
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → 𝐿 ∈ ℂ ) |
421 |
396 413 417 420
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( 𝐺 ‘ ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) ) = 𝐿 ) |
422 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) → ( 𝑥 − 𝑇 ) = ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) ) |
423 |
422
|
fveq2d |
⊢ ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) → ( 𝐺 ‘ ( 𝑥 − 𝑇 ) ) = ( 𝐺 ‘ ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) ) ) |
424 |
423
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( 𝐺 ‘ ( 𝑥 − 𝑇 ) ) = ( 𝐺 ‘ ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) ) ) |
425 |
|
iftrue |
⊢ ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) → if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) = 𝐿 ) |
426 |
425
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) = 𝐿 ) |
427 |
421 424 426
|
3eqtr4rd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) = ( 𝐺 ‘ ( 𝑥 − 𝑇 ) ) ) |
428 |
427
|
ad4ant14 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) = ( 𝐺 ‘ ( 𝑥 − 𝑇 ) ) ) |
429 |
|
iffalse |
⊢ ( ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) → if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) = ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) |
430 |
429
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) = ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) |
431 |
372
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → 𝐺 = ( 𝑤 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑤 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑤 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑤 ) ) ) ) ) |
432 |
431
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → 𝐺 = ( 𝑤 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑤 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑤 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑤 ) ) ) ) ) |
433 |
|
eqeq1 |
⊢ ( 𝑤 = ( 𝑥 − 𝑇 ) → ( 𝑤 = ( 𝑄 ‘ 𝑖 ) ↔ ( 𝑥 − 𝑇 ) = ( 𝑄 ‘ 𝑖 ) ) ) |
434 |
|
eqeq1 |
⊢ ( 𝑤 = ( 𝑥 − 𝑇 ) → ( 𝑤 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ↔ ( 𝑥 − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
435 |
|
fveq2 |
⊢ ( 𝑤 = ( 𝑥 − 𝑇 ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑤 ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) |
436 |
434 435
|
ifbieq2d |
⊢ ( 𝑤 = ( 𝑥 − 𝑇 ) → if ( 𝑤 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑤 ) ) = if ( ( 𝑥 − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) ) |
437 |
433 436
|
ifbieq2d |
⊢ ( 𝑤 = ( 𝑥 − 𝑇 ) → if ( 𝑤 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑤 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑤 ) ) ) = if ( ( 𝑥 − 𝑇 ) = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( ( 𝑥 − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) ) ) |
438 |
437
|
adantl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑤 = ( 𝑥 − 𝑇 ) ) → if ( 𝑤 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑤 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑤 ) ) ) = if ( ( 𝑥 − 𝑇 ) = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( ( 𝑥 − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) ) ) |
439 |
305
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ ℂ ) |
440 |
227
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑇 ∈ ℂ ) |
441 |
439 440
|
npcand |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝑥 − 𝑇 ) + 𝑇 ) = 𝑥 ) |
442 |
441
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 = ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) |
443 |
442
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ( 𝑥 − 𝑇 ) = ( 𝑄 ‘ 𝑖 ) ) → 𝑥 = ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) |
444 |
|
oveq1 |
⊢ ( ( 𝑥 − 𝑇 ) = ( 𝑄 ‘ 𝑖 ) → ( ( 𝑥 − 𝑇 ) + 𝑇 ) = ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ) |
445 |
444
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ( 𝑥 − 𝑇 ) = ( 𝑄 ‘ 𝑖 ) ) → ( ( 𝑥 − 𝑇 ) + 𝑇 ) = ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ) |
446 |
296
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ( 𝑥 − 𝑇 ) = ( 𝑄 ‘ 𝑖 ) ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) = ( 𝑆 ‘ 𝑖 ) ) |
447 |
443 445 446
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ( 𝑥 − 𝑇 ) = ( 𝑄 ‘ 𝑖 ) ) → 𝑥 = ( 𝑆 ‘ 𝑖 ) ) |
448 |
447
|
stoic1a |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) → ¬ ( 𝑥 − 𝑇 ) = ( 𝑄 ‘ 𝑖 ) ) |
449 |
448
|
iffalsed |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) → if ( ( 𝑥 − 𝑇 ) = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( ( 𝑥 − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) ) = if ( ( 𝑥 − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) ) |
450 |
449
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑤 = ( 𝑥 − 𝑇 ) ) → if ( ( 𝑥 − 𝑇 ) = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( ( 𝑥 − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) ) = if ( ( 𝑥 − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) ) |
451 |
442
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ( 𝑥 − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → 𝑥 = ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) |
452 |
|
oveq1 |
⊢ ( ( 𝑥 − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) → ( ( 𝑥 − 𝑇 ) + 𝑇 ) = ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) |
453 |
452
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ( 𝑥 − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝑥 − 𝑇 ) + 𝑇 ) = ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) |
454 |
292
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ( 𝑥 − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) |
455 |
451 453 454
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ( 𝑥 − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) |
456 |
455
|
stoic1a |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ¬ ( 𝑥 − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
457 |
456
|
iffalsed |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → if ( ( 𝑥 − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) |
458 |
457
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → if ( ( 𝑥 − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) |
459 |
458
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑤 = ( 𝑥 − 𝑇 ) ) → if ( ( 𝑥 − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) |
460 |
438 450 459
|
3eqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑤 = ( 𝑥 − 𝑇 ) ) → if ( 𝑤 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑤 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑤 ) ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) |
461 |
50
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
462 |
53
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
463 |
78
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑇 ∈ ℝ ) |
464 |
305 463
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑥 − 𝑇 ) ∈ ℝ ) |
465 |
229
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) = ( ( 𝑆 ‘ 𝑖 ) − 𝑇 ) ) |
466 |
208
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑆 ‘ 𝑖 ) ∈ ℝ* ) |
467 |
210
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑆 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
468 |
|
iccgelb |
⊢ ( ( ( 𝑆 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝑆 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑆 ‘ 𝑖 ) ≤ 𝑥 ) |
469 |
466 467 303 468
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑆 ‘ 𝑖 ) ≤ 𝑥 ) |
470 |
301 305 463 469
|
lesub1dd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝑆 ‘ 𝑖 ) − 𝑇 ) ≤ ( 𝑥 − 𝑇 ) ) |
471 |
465 470
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑥 − 𝑇 ) ) |
472 |
|
iccleub |
⊢ ( ( ( 𝑆 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝑆 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ≤ ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) |
473 |
466 467 303 472
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ≤ ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) |
474 |
305 302 463 473
|
lesub1dd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑥 − 𝑇 ) ≤ ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) ) |
475 |
248
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝑆 ‘ ( 𝑖 + 1 ) ) − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
476 |
474 475
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑥 − 𝑇 ) ≤ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
477 |
461 462 464 471 476
|
eliccd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑥 − 𝑇 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
478 |
477
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑥 − 𝑇 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
479 |
138 273
|
fssresd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
480 |
479
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
481 |
184
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
482 |
186
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
483 |
305
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → 𝑥 ∈ ℝ ) |
484 |
98
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → 𝑇 ∈ ℝ ) |
485 |
483 484
|
resubcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑥 − 𝑇 ) ∈ ℝ ) |
486 |
50
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
487 |
464
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) → ( 𝑥 − 𝑇 ) ∈ ℝ ) |
488 |
471
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑥 − 𝑇 ) ) |
489 |
448
|
neqned |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) → ( 𝑥 − 𝑇 ) ≠ ( 𝑄 ‘ 𝑖 ) ) |
490 |
486 487 488 489
|
leneltd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑥 − 𝑇 ) ) |
491 |
490
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑥 − 𝑇 ) ) |
492 |
464
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑥 − 𝑇 ) ∈ ℝ ) |
493 |
53
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
494 |
476
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑥 − 𝑇 ) ≤ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
495 |
|
eqcom |
⊢ ( ( 𝑥 − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ↔ ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑥 − 𝑇 ) ) |
496 |
455
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝑥 − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) → 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) |
497 |
495 496
|
syl5bir |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑥 − 𝑇 ) → 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) |
498 |
497
|
con3dimp |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ¬ ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑥 − 𝑇 ) ) |
499 |
498
|
neqned |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ≠ ( 𝑥 − 𝑇 ) ) |
500 |
492 493 494 499
|
leneltd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑥 − 𝑇 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
501 |
500
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑥 − 𝑇 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
502 |
481 482 485 491 501
|
eliood |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑥 − 𝑇 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
503 |
480 502
|
ffvelrnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ∈ ℂ ) |
504 |
432 460 478 503
|
fvmptd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( 𝐺 ‘ ( 𝑥 − 𝑇 ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) |
505 |
|
fvres |
⊢ ( ( 𝑥 − 𝑇 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) = ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) |
506 |
502 505
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) = ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) |
507 |
504 506
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( 𝐺 ‘ ( 𝑥 − 𝑇 ) ) = ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) |
508 |
466
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑆 ‘ 𝑖 ) ∈ ℝ* ) |
509 |
467
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑆 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
510 |
123
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) → ( 𝑆 ‘ 𝑖 ) ∈ ℝ ) |
511 |
305
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) → 𝑥 ∈ ℝ ) |
512 |
469
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) → ( 𝑆 ‘ 𝑖 ) ≤ 𝑥 ) |
513 |
|
neqne |
⊢ ( ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) → 𝑥 ≠ ( 𝑆 ‘ 𝑖 ) ) |
514 |
513
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) → 𝑥 ≠ ( 𝑆 ‘ 𝑖 ) ) |
515 |
510 511 512 514
|
leneltd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) → ( 𝑆 ‘ 𝑖 ) < 𝑥 ) |
516 |
515
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑆 ‘ 𝑖 ) < 𝑥 ) |
517 |
302
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑆 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
518 |
473
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → 𝑥 ≤ ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) |
519 |
|
neqne |
⊢ ( ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) → 𝑥 ≠ ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) |
520 |
519
|
necomd |
⊢ ( ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) → ( 𝑆 ‘ ( 𝑖 + 1 ) ) ≠ 𝑥 ) |
521 |
520
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑆 ‘ ( 𝑖 + 1 ) ) ≠ 𝑥 ) |
522 |
483 517 518 521
|
leneltd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → 𝑥 < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) |
523 |
508 509 483 516 522
|
eliood |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) |
524 |
|
fvres |
⊢ ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
525 |
523 524
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
526 |
441
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐹 ‘ ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
527 |
526
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) ) |
528 |
527
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) ) |
529 |
439 440
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑥 − 𝑇 ) ∈ ℂ ) |
530 |
|
elex |
⊢ ( ( 𝑥 − 𝑇 ) ∈ ℂ → ( 𝑥 − 𝑇 ) ∈ V ) |
531 |
529 530
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑥 − 𝑇 ) ∈ V ) |
532 |
531
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑥 − 𝑇 ) ∈ V ) |
533 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → 𝜑 ) |
534 |
156
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐴 ∈ ℝ* ) |
535 |
158
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐵 ∈ ℝ* ) |
536 |
160
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
537 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
538 |
534 535 536 537
|
fourierdlem8 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
539 |
538
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
540 |
539 477
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑥 − 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
541 |
540
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑥 − 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
542 |
533 541
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( 𝜑 ∧ ( 𝑥 − 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) ) |
543 |
|
eleq1 |
⊢ ( 𝑦 = ( 𝑥 − 𝑇 ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 − 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) ) |
544 |
543
|
anbi2d |
⊢ ( 𝑦 = ( 𝑥 − 𝑇 ) → ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ↔ ( 𝜑 ∧ ( 𝑥 − 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) ) ) |
545 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑥 − 𝑇 ) → ( 𝑦 + 𝑇 ) = ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) |
546 |
545
|
fveq2d |
⊢ ( 𝑦 = ( 𝑥 − 𝑇 ) → ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) ) |
547 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑥 − 𝑇 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) |
548 |
546 547
|
eqeq12d |
⊢ ( 𝑦 = ( 𝑥 − 𝑇 ) → ( ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) ) |
549 |
544 548
|
imbi12d |
⊢ ( 𝑦 = ( 𝑥 − 𝑇 ) → ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝜑 ∧ ( 𝑥 − 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) ) ) |
550 |
|
eleq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
551 |
550
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ↔ ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ) |
552 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 + 𝑇 ) = ( 𝑦 + 𝑇 ) ) |
553 |
552
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) ) |
554 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
555 |
553 554
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ) ) |
556 |
551 555
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ) ) ) |
557 |
556 7
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ) |
558 |
549 557
|
vtoclg |
⊢ ( ( 𝑥 − 𝑇 ) ∈ V → ( ( 𝜑 ∧ ( 𝑥 − 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) ) |
559 |
532 542 558
|
sylc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( 𝐹 ‘ ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) |
560 |
525 528 559
|
3eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) |
561 |
507 560
|
eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( 𝐺 ‘ ( 𝑥 − 𝑇 ) ) = ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) |
562 |
430 561
|
eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) = ( 𝐺 ‘ ( 𝑥 − 𝑇 ) ) ) |
563 |
428 562
|
pm2.61dan |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) → if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) = ( 𝐺 ‘ ( 𝑥 − 𝑇 ) ) ) |
564 |
395 563
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) → if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) = ( 𝐺 ‘ ( 𝑥 − 𝑇 ) ) ) |
565 |
393 564
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) = ( 𝐺 ‘ ( 𝑥 − 𝑇 ) ) ) |
566 |
310 390
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) → if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ∈ ℂ ) |
567 |
566
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) → if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ∈ ℂ ) |
568 |
426 420
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ∈ ℂ ) |
569 |
568
|
ad4ant14 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ∈ ℂ ) |
570 |
265 267
|
fssresd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
571 |
570
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
572 |
571 523
|
ffvelrnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ∈ ℂ ) |
573 |
430 572
|
eqeltrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ∈ ℂ ) |
574 |
569 573
|
pm2.61dan |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) → if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ∈ ℂ ) |
575 |
395 574
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) → if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ∈ ℂ ) |
576 |
567 575
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ∈ ℂ ) |
577 |
|
eqid |
⊢ ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ) |
578 |
577
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ∧ if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ∈ ℂ ) → ( ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ) ‘ 𝑥 ) = if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ) |
579 |
303 576 578
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ) ‘ 𝑥 ) = if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ) |
580 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
581 |
|
eqid |
⊢ ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ) |
582 |
580 581 50 53 10 12 11
|
cncfiooicc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
583 |
365 582
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐺 ∈ ( ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
584 |
|
cncff |
⊢ ( 𝐺 ∈ ( ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) → 𝐺 : ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
585 |
583 584
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐺 : ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
586 |
585
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → 𝐺 : ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
587 |
586 477
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐺 ‘ ( 𝑥 − 𝑇 ) ) ∈ ℂ ) |
588 |
14
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ∧ ( 𝐺 ‘ ( 𝑥 − 𝑇 ) ) ∈ ℂ ) → ( 𝐻 ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝑥 − 𝑇 ) ) ) |
589 |
303 587 588
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐻 ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝑥 − 𝑇 ) ) ) |
590 |
565 579 589
|
3eqtr4rd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐻 ‘ 𝑥 ) = ( ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ) ‘ 𝑥 ) ) |
591 |
590
|
itgeq2dv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∫ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ( 𝐻 ‘ 𝑥 ) d 𝑥 = ∫ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ( ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ) ‘ 𝑥 ) d 𝑥 ) |
592 |
|
ioossicc |
⊢ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) |
593 |
592
|
sseli |
⊢ ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) → 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) |
594 |
593
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) |
595 |
593 576
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ∈ ℂ ) |
596 |
594 595 578
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ) ‘ 𝑥 ) = if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ) |
597 |
231 239
|
gtned |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ≠ ( 𝑆 ‘ 𝑖 ) ) |
598 |
597
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ¬ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) |
599 |
598
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) = if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) |
600 |
232 243
|
ltned |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ≠ ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) |
601 |
600
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ¬ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) |
602 |
601
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) = ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) |
603 |
524
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
604 |
602 603
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
605 |
596 599 604
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
606 |
605
|
itgeq2dv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∫ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ( ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ) ‘ 𝑥 ) d 𝑥 = ∫ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
607 |
579 576
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ) ‘ 𝑥 ) ∈ ℂ ) |
608 |
123 124 607
|
itgioo |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∫ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ( ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ) ‘ 𝑥 ) d 𝑥 = ∫ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ( ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ) ‘ 𝑥 ) d 𝑥 ) |
609 |
123 124 306
|
itgioo |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∫ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
610 |
606 608 609
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∫ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ( ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ) ‘ 𝑥 ) d 𝑥 = ∫ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
611 |
591 610
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∫ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ( 𝐻 ‘ 𝑥 ) d 𝑥 ) |
612 |
102 112
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) = ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) |
613 |
612
|
itgeq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∫ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ( 𝐻 ‘ 𝑥 ) d 𝑥 = ∫ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ( 𝐻 ‘ 𝑥 ) d 𝑥 ) |
614 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) |
615 |
612
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) = ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) |
616 |
615
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) = ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) |
617 |
614 616
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) |
618 |
585
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → 𝐺 : ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
619 |
50
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
620 |
53
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
621 |
100
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ∈ ℝ ) |
622 |
111
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ∈ ℝ ) |
623 |
|
eliccre |
⊢ ( ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ∈ ℝ ∧ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ∈ ℝ ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → 𝑥 ∈ ℝ ) |
624 |
621 622 614 623
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → 𝑥 ∈ ℝ ) |
625 |
78
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → 𝑇 ∈ ℝ ) |
626 |
624 625
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) ∈ ℝ ) |
627 |
228
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) = ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) − 𝑇 ) ) |
628 |
627
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑄 ‘ 𝑖 ) = ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) − 𝑇 ) ) |
629 |
621
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ∈ ℝ* ) |
630 |
622
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ∈ ℝ* ) |
631 |
|
iccgelb |
⊢ ( ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ∈ ℝ* ∧ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ∈ ℝ* ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ≤ 𝑥 ) |
632 |
629 630 614 631
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ≤ 𝑥 ) |
633 |
621 624 625 632
|
lesub1dd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) − 𝑇 ) ≤ ( 𝑥 − 𝑇 ) ) |
634 |
628 633
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑥 − 𝑇 ) ) |
635 |
|
iccleub |
⊢ ( ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ∈ ℝ* ∧ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ∈ ℝ* ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → 𝑥 ≤ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) |
636 |
629 630 614 635
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → 𝑥 ≤ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) |
637 |
624 622 625 636
|
lesub1dd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) ≤ ( ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) − 𝑇 ) ) |
638 |
247
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
639 |
637 638
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) ≤ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
640 |
619 620 626 634 639
|
eliccd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
641 |
618 640
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝐺 ‘ ( 𝑥 − 𝑇 ) ) ∈ ℂ ) |
642 |
617 641 588
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝐻 ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝑥 − 𝑇 ) ) ) |
643 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑦 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ↦ ( 𝐺 ‘ ( 𝑦 − 𝑇 ) ) ) = ( 𝑦 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ↦ ( 𝐺 ‘ ( 𝑦 − 𝑇 ) ) ) ) |
644 |
|
oveq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 − 𝑇 ) = ( 𝑥 − 𝑇 ) ) |
645 |
644
|
fveq2d |
⊢ ( 𝑦 = 𝑥 → ( 𝐺 ‘ ( 𝑦 − 𝑇 ) ) = ( 𝐺 ‘ ( 𝑥 − 𝑇 ) ) ) |
646 |
645
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) ∧ 𝑦 = 𝑥 ) → ( 𝐺 ‘ ( 𝑦 − 𝑇 ) ) = ( 𝐺 ‘ ( 𝑥 − 𝑇 ) ) ) |
647 |
643 646 614 641
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( ( 𝑦 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ↦ ( 𝐺 ‘ ( 𝑦 − 𝑇 ) ) ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝑥 − 𝑇 ) ) ) |
648 |
642 647
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝐻 ‘ 𝑥 ) = ( ( 𝑦 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ↦ ( 𝐺 ‘ ( 𝑦 − 𝑇 ) ) ) ‘ 𝑥 ) ) |
649 |
648
|
itgeq2dv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∫ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ( 𝐻 ‘ 𝑥 ) d 𝑥 = ∫ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ( ( 𝑦 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ↦ ( 𝐺 ‘ ( 𝑦 − 𝑇 ) ) ) ‘ 𝑥 ) d 𝑥 ) |
650 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑇 ∈ ℝ+ ) |
651 |
645
|
cbvmptv |
⊢ ( 𝑦 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ↦ ( 𝐺 ‘ ( 𝑦 − 𝑇 ) ) ) = ( 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ↦ ( 𝐺 ‘ ( 𝑥 − 𝑇 ) ) ) |
652 |
50 53 382 583 650 651
|
itgiccshift |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∫ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ( ( 𝑦 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ↦ ( 𝐺 ‘ ( 𝑦 − 𝑇 ) ) ) ‘ 𝑥 ) d 𝑥 = ∫ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 ) |
653 |
613 649 652
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∫ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ( 𝐻 ‘ 𝑥 ) d 𝑥 = ∫ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 ) |
654 |
135
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → dom 𝐹 = ℝ ) |
655 |
64 654
|
sseqtrrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom 𝐹 ) |
656 |
50 53 138 10 655 11 12 13
|
itgioocnicc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐺 ∈ 𝐿1 ∧ ∫ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 = ∫ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) |
657 |
656
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∫ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 = ∫ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
658 |
611 653 657
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∫ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
659 |
658
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∫ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = Σ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∫ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
660 |
93 308 659
|
3eqtrrd |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∫ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
661 |
25 68 660
|
3eqtrrd |
⊢ ( 𝜑 → ∫ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |