| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem85.p |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( π + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 2 |
|
fourierdlem85.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 3 |
|
fourierdlem85.x |
⊢ ( 𝜑 → 𝑋 ∈ ran 𝑉 ) |
| 4 |
|
fourierdlem85.y |
⊢ ( 𝜑 → 𝑌 ∈ ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ) |
| 5 |
|
fourierdlem85.w |
⊢ ( 𝜑 → 𝑊 ∈ ℝ ) |
| 6 |
|
fourierdlem85.h |
⊢ 𝐻 = ( 𝑠 ∈ ( - π [,] π ) ↦ if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) ) |
| 7 |
|
fourierdlem85.k |
⊢ 𝐾 = ( 𝑠 ∈ ( - π [,] π ) ↦ if ( 𝑠 = 0 , 1 , ( 𝑠 / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) |
| 8 |
|
fourierdlem85.u |
⊢ 𝑈 = ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ) |
| 9 |
|
fourierdlem85.n |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 10 |
|
fourierdlem85.s |
⊢ 𝑆 = ( 𝑠 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑠 ) ) ) |
| 11 |
|
fourierdlem85.g |
⊢ 𝐺 = ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝑈 ‘ 𝑠 ) · ( 𝑆 ‘ 𝑠 ) ) ) |
| 12 |
|
fourierdlem85.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 13 |
|
fourierdlem85.v |
⊢ ( 𝜑 → 𝑉 ∈ ( 𝑃 ‘ 𝑀 ) ) |
| 14 |
|
fourierdlem85.r |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑉 ‘ 𝑖 ) ) ) |
| 15 |
|
fourierdlem85.q |
⊢ 𝑄 = ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) |
| 16 |
|
fourierdlem85.o |
⊢ 𝑂 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = - π ∧ ( 𝑝 ‘ 𝑚 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 17 |
|
fourierdlem85.i |
⊢ 𝐼 = ( ℝ D 𝐹 ) |
| 18 |
|
fourierdlem85.ifn |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐼 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
| 19 |
|
fourierdlem85.e |
⊢ ( 𝜑 → 𝐸 ∈ ( ( 𝐼 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ) |
| 20 |
|
fourierdlem85.a |
⊢ 𝐴 = ( ( if ( ( 𝑉 ‘ 𝑖 ) = 𝑋 , 𝐸 , ( ( 𝑅 − if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) ) / ( 𝑄 ‘ 𝑖 ) ) ) · ( 𝐾 ‘ ( 𝑄 ‘ 𝑖 ) ) ) · ( 𝑆 ‘ ( 𝑄 ‘ 𝑖 ) ) ) |
| 21 |
|
eqid |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑈 ‘ 𝑠 ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑈 ‘ 𝑠 ) ) |
| 22 |
|
eqid |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑆 ‘ 𝑠 ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑆 ‘ 𝑠 ) ) |
| 23 |
|
eqid |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝑈 ‘ 𝑠 ) · ( 𝑆 ‘ 𝑠 ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝑈 ‘ 𝑠 ) · ( 𝑆 ‘ 𝑠 ) ) ) |
| 24 |
|
pire |
⊢ π ∈ ℝ |
| 25 |
24
|
renegcli |
⊢ - π ∈ ℝ |
| 26 |
25
|
rexri |
⊢ - π ∈ ℝ* |
| 27 |
26
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → - π ∈ ℝ* ) |
| 28 |
24
|
rexri |
⊢ π ∈ ℝ* |
| 29 |
28
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → π ∈ ℝ* ) |
| 30 |
24
|
a1i |
⊢ ( 𝜑 → π ∈ ℝ ) |
| 31 |
30
|
renegcld |
⊢ ( 𝜑 → - π ∈ ℝ ) |
| 32 |
1
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑉 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑉 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑉 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑉 ‘ 𝑀 ) = ( π + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 33 |
12 32
|
syl |
⊢ ( 𝜑 → ( 𝑉 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑉 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑉 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑉 ‘ 𝑀 ) = ( π + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 34 |
13 33
|
mpbid |
⊢ ( 𝜑 → ( 𝑉 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑉 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑉 ‘ 𝑀 ) = ( π + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 35 |
34
|
simpld |
⊢ ( 𝜑 → 𝑉 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
| 36 |
|
elmapi |
⊢ ( 𝑉 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) → 𝑉 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 37 |
|
frn |
⊢ ( 𝑉 : ( 0 ... 𝑀 ) ⟶ ℝ → ran 𝑉 ⊆ ℝ ) |
| 38 |
35 36 37
|
3syl |
⊢ ( 𝜑 → ran 𝑉 ⊆ ℝ ) |
| 39 |
38 3
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 40 |
31 30 39 1 16 12 13 15
|
fourierdlem14 |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑂 ‘ 𝑀 ) ) |
| 41 |
16 12 40
|
fourierdlem15 |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) |
| 42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) |
| 43 |
42
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) |
| 44 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
| 45 |
27 29 43 44
|
fourierdlem8 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( - π [,] π ) ) |
| 46 |
|
ioossicc |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 47 |
46
|
sseli |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 48 |
47
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 49 |
45 48
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ∈ ( - π [,] π ) ) |
| 50 |
|
ioossre |
⊢ ( 𝑋 (,) +∞ ) ⊆ ℝ |
| 51 |
50
|
a1i |
⊢ ( 𝜑 → ( 𝑋 (,) +∞ ) ⊆ ℝ ) |
| 52 |
2 51
|
fssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) : ( 𝑋 (,) +∞ ) ⟶ ℝ ) |
| 53 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 54 |
51 53
|
sstrdi |
⊢ ( 𝜑 → ( 𝑋 (,) +∞ ) ⊆ ℂ ) |
| 55 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 56 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 57 |
56
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
| 58 |
39
|
ltpnfd |
⊢ ( 𝜑 → 𝑋 < +∞ ) |
| 59 |
55 57 39 58
|
lptioo1cn |
⊢ ( 𝜑 → 𝑋 ∈ ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑋 (,) +∞ ) ) ) |
| 60 |
52 54 59 4
|
limcrecl |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 61 |
2 39 60 5 6
|
fourierdlem9 |
⊢ ( 𝜑 → 𝐻 : ( - π [,] π ) ⟶ ℝ ) |
| 62 |
53
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 63 |
61 62
|
fssd |
⊢ ( 𝜑 → 𝐻 : ( - π [,] π ) ⟶ ℂ ) |
| 64 |
63
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝐻 : ( - π [,] π ) ⟶ ℂ ) |
| 65 |
64 49
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐻 ‘ 𝑠 ) ∈ ℂ ) |
| 66 |
7
|
fourierdlem43 |
⊢ 𝐾 : ( - π [,] π ) ⟶ ℝ |
| 67 |
66
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝐾 : ( - π [,] π ) ⟶ ℝ ) |
| 68 |
67 49
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐾 ‘ 𝑠 ) ∈ ℝ ) |
| 69 |
68
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐾 ‘ 𝑠 ) ∈ ℂ ) |
| 70 |
65 69
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ∈ ℂ ) |
| 71 |
8
|
fvmpt2 |
⊢ ( ( 𝑠 ∈ ( - π [,] π ) ∧ ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ∈ ℂ ) → ( 𝑈 ‘ 𝑠 ) = ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ) |
| 72 |
49 70 71
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑈 ‘ 𝑠 ) = ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ) |
| 73 |
72 70
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑈 ‘ 𝑠 ) ∈ ℂ ) |
| 74 |
9 10
|
fourierdlem18 |
⊢ ( 𝜑 → 𝑆 ∈ ( ( - π [,] π ) –cn→ ℝ ) ) |
| 75 |
|
cncff |
⊢ ( 𝑆 ∈ ( ( - π [,] π ) –cn→ ℝ ) → 𝑆 : ( - π [,] π ) ⟶ ℝ ) |
| 76 |
74 75
|
syl |
⊢ ( 𝜑 → 𝑆 : ( - π [,] π ) ⟶ ℝ ) |
| 77 |
76
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑆 : ( - π [,] π ) ⟶ ℝ ) |
| 78 |
77
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑆 : ( - π [,] π ) ⟶ ℝ ) |
| 79 |
78 49
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑆 ‘ 𝑠 ) ∈ ℝ ) |
| 80 |
79
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑆 ‘ 𝑠 ) ∈ ℂ ) |
| 81 |
|
eqid |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐻 ‘ 𝑠 ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐻 ‘ 𝑠 ) ) |
| 82 |
|
eqid |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐾 ‘ 𝑠 ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐾 ‘ 𝑠 ) ) |
| 83 |
|
eqid |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ) |
| 84 |
|
eqid |
⊢ if ( ( 𝑉 ‘ 𝑖 ) = 𝑋 , 𝐸 , ( ( 𝑅 − if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) ) / ( 𝑄 ‘ 𝑖 ) ) ) = if ( ( 𝑉 ‘ 𝑖 ) = 𝑋 , 𝐸 , ( ( 𝑅 − if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) ) / ( 𝑄 ‘ 𝑖 ) ) ) |
| 85 |
39 1 2 3 4 5 6 12 13 14 15 16 17 18 19 84
|
fourierdlem75 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → if ( ( 𝑉 ‘ 𝑖 ) = 𝑋 , 𝐸 , ( ( 𝑅 − if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) ) / ( 𝑄 ‘ 𝑖 ) ) ) ∈ ( ( 𝐻 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 86 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐻 : ( - π [,] π ) ⟶ ℝ ) |
| 87 |
26
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → - π ∈ ℝ* ) |
| 88 |
28
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → π ∈ ℝ* ) |
| 89 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
| 90 |
87 88 42 89
|
fourierdlem8 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( - π [,] π ) ) |
| 91 |
46 90
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( - π [,] π ) ) |
| 92 |
86 91
|
feqresmpt |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐻 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐻 ‘ 𝑠 ) ) ) |
| 93 |
92
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐻 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐻 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 94 |
85 93
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → if ( ( 𝑉 ‘ 𝑖 ) = 𝑋 , 𝐸 , ( ( 𝑅 − if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) ) / ( 𝑄 ‘ 𝑖 ) ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐻 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 95 |
|
limcresi |
⊢ ( 𝐾 limℂ ( 𝑄 ‘ 𝑖 ) ) ⊆ ( ( 𝐾 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) |
| 96 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 97 |
|
cncfss |
⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( - π [,] π ) –cn→ ℝ ) ⊆ ( ( - π [,] π ) –cn→ ℂ ) ) |
| 98 |
53 96 97
|
mp2an |
⊢ ( ( - π [,] π ) –cn→ ℝ ) ⊆ ( ( - π [,] π ) –cn→ ℂ ) |
| 99 |
7
|
fourierdlem62 |
⊢ 𝐾 ∈ ( ( - π [,] π ) –cn→ ℝ ) |
| 100 |
98 99
|
sselii |
⊢ 𝐾 ∈ ( ( - π [,] π ) –cn→ ℂ ) |
| 101 |
100
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐾 ∈ ( ( - π [,] π ) –cn→ ℂ ) ) |
| 102 |
|
elfzofz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
| 103 |
102
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
| 104 |
42 103
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ( - π [,] π ) ) |
| 105 |
101 104
|
cnlimci |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐾 ‘ ( 𝑄 ‘ 𝑖 ) ) ∈ ( 𝐾 limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 106 |
95 105
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐾 ‘ ( 𝑄 ‘ 𝑖 ) ) ∈ ( ( 𝐾 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 107 |
|
cncff |
⊢ ( 𝐾 ∈ ( ( - π [,] π ) –cn→ ℂ ) → 𝐾 : ( - π [,] π ) ⟶ ℂ ) |
| 108 |
100 107
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐾 : ( - π [,] π ) ⟶ ℂ ) |
| 109 |
108 91
|
feqresmpt |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐾 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐾 ‘ 𝑠 ) ) ) |
| 110 |
109
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐾 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐾 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 111 |
106 110
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐾 ‘ ( 𝑄 ‘ 𝑖 ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐾 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 112 |
81 82 83 65 69 94 111
|
mullimc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( if ( ( 𝑉 ‘ 𝑖 ) = 𝑋 , 𝐸 , ( ( 𝑅 − if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) ) / ( 𝑄 ‘ 𝑖 ) ) ) · ( 𝐾 ‘ ( 𝑄 ‘ 𝑖 ) ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 113 |
72
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑈 ‘ 𝑠 ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ) ) |
| 114 |
113
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑈 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 115 |
112 114
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( if ( ( 𝑉 ‘ 𝑖 ) = 𝑋 , 𝐸 , ( ( 𝑅 − if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) ) / ( 𝑄 ‘ 𝑖 ) ) ) · ( 𝐾 ‘ ( 𝑄 ‘ 𝑖 ) ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑈 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 116 |
|
limcresi |
⊢ ( 𝑆 limℂ ( 𝑄 ‘ 𝑖 ) ) ⊆ ( ( 𝑆 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) |
| 117 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑆 ∈ ( ( - π [,] π ) –cn→ ℝ ) ) |
| 118 |
117 104
|
cnlimci |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 ‘ ( 𝑄 ‘ 𝑖 ) ) ∈ ( 𝑆 limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 119 |
116 118
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 ‘ ( 𝑄 ‘ 𝑖 ) ) ∈ ( ( 𝑆 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 120 |
77 91
|
feqresmpt |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑆 ‘ 𝑠 ) ) ) |
| 121 |
120
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑆 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 122 |
119 121
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 ‘ ( 𝑄 ‘ 𝑖 ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑆 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 123 |
21 22 23 73 80 115 122
|
mullimc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( if ( ( 𝑉 ‘ 𝑖 ) = 𝑋 , 𝐸 , ( ( 𝑅 − if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) ) / ( 𝑄 ‘ 𝑖 ) ) ) · ( 𝐾 ‘ ( 𝑄 ‘ 𝑖 ) ) ) · ( 𝑆 ‘ ( 𝑄 ‘ 𝑖 ) ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝑈 ‘ 𝑠 ) · ( 𝑆 ‘ 𝑠 ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 124 |
20 123
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐴 ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝑈 ‘ 𝑠 ) · ( 𝑆 ‘ 𝑠 ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 125 |
11
|
reseq1i |
⊢ ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝑈 ‘ 𝑠 ) · ( 𝑆 ‘ 𝑠 ) ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 126 |
91
|
resmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝑈 ‘ 𝑠 ) · ( 𝑆 ‘ 𝑠 ) ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝑈 ‘ 𝑠 ) · ( 𝑆 ‘ 𝑠 ) ) ) ) |
| 127 |
125 126
|
eqtr2id |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝑈 ‘ 𝑠 ) · ( 𝑆 ‘ 𝑠 ) ) ) = ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 128 |
127
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝑈 ‘ 𝑠 ) · ( 𝑆 ‘ 𝑠 ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 129 |
124 128
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐴 ∈ ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |