Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem89.p |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
2 |
|
fourierdlem89.t |
⊢ 𝑇 = ( 𝐵 − 𝐴 ) |
3 |
|
fourierdlem89.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
4 |
|
fourierdlem89.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
5 |
|
fourierdlem89.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℂ ) |
6 |
|
fourierdlem89.per |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
7 |
|
fourierdlem89.fcn |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
8 |
|
fourierdlem89.limc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
9 |
|
fourierdlem89.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
10 |
|
fourierdlem89.d |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝐶 (,) +∞ ) ) |
11 |
|
fourierdlem89.o |
⊢ 𝑂 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐶 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
12 |
|
fourierdlem89.12 |
⊢ 𝐻 = ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) |
13 |
|
fourierdlem89.n |
⊢ 𝑁 = ( ( ♯ ‘ 𝐻 ) − 1 ) |
14 |
|
fourierdlem89.s |
⊢ 𝑆 = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ) |
15 |
|
fourierdlem89.e |
⊢ 𝐸 = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) |
16 |
|
fourierdlem89.z |
⊢ 𝑍 = ( 𝑦 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) ) |
17 |
|
fourierdlem89.j |
⊢ ( 𝜑 → 𝐽 ∈ ( 0 ..^ 𝑁 ) ) |
18 |
|
fourierdlem89.u |
⊢ 𝑈 = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
19 |
|
fourierdlem89.20 |
⊢ 𝐼 = ( 𝑥 ∈ ℝ ↦ sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑍 ‘ ( 𝐸 ‘ 𝑥 ) ) } , ℝ , < ) ) |
20 |
|
fourierdlem89.21 |
⊢ 𝑉 = ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ 𝑅 ) |
21 |
1
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
22 |
3 21
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
23 |
4 22
|
mpbid |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
24 |
23
|
simpld |
⊢ ( 𝜑 → 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
25 |
|
elmapi |
⊢ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
26 |
24 25
|
syl |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
27 |
|
fzossfz |
⊢ ( 0 ..^ 𝑀 ) ⊆ ( 0 ... 𝑀 ) |
28 |
1 3 4 2 15 16 19
|
fourierdlem37 |
⊢ ( 𝜑 → ( 𝐼 : ℝ ⟶ ( 0 ..^ 𝑀 ) ∧ ( 𝑥 ∈ ℝ → sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑍 ‘ ( 𝐸 ‘ 𝑥 ) ) } , ℝ , < ) ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑍 ‘ ( 𝐸 ‘ 𝑥 ) ) } ) ) ) |
29 |
28
|
simpld |
⊢ ( 𝜑 → 𝐼 : ℝ ⟶ ( 0 ..^ 𝑀 ) ) |
30 |
|
elioore |
⊢ ( 𝐷 ∈ ( 𝐶 (,) +∞ ) → 𝐷 ∈ ℝ ) |
31 |
10 30
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
32 |
|
elioo4g |
⊢ ( 𝐷 ∈ ( 𝐶 (,) +∞ ) ↔ ( ( 𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐷 ∈ ℝ ) ∧ ( 𝐶 < 𝐷 ∧ 𝐷 < +∞ ) ) ) |
33 |
10 32
|
sylib |
⊢ ( 𝜑 → ( ( 𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐷 ∈ ℝ ) ∧ ( 𝐶 < 𝐷 ∧ 𝐷 < +∞ ) ) ) |
34 |
33
|
simprd |
⊢ ( 𝜑 → ( 𝐶 < 𝐷 ∧ 𝐷 < +∞ ) ) |
35 |
34
|
simpld |
⊢ ( 𝜑 → 𝐶 < 𝐷 ) |
36 |
|
oveq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 + ( 𝑘 · 𝑇 ) ) = ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) |
37 |
36
|
eleq1d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
38 |
37
|
rexbidv |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
39 |
38
|
cbvrabv |
⊢ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } = { 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } |
40 |
39
|
uneq2i |
⊢ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { 𝐶 , 𝐷 } ∪ { 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) |
41 |
12
|
fveq2i |
⊢ ( ♯ ‘ 𝐻 ) = ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) |
42 |
41
|
oveq1i |
⊢ ( ( ♯ ‘ 𝐻 ) − 1 ) = ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) |
43 |
13 42
|
eqtri |
⊢ 𝑁 = ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) |
44 |
|
isoeq5 |
⊢ ( 𝐻 = ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) → ( 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ↔ 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) ) |
45 |
12 44
|
ax-mp |
⊢ ( 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ↔ 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) |
46 |
45
|
iotabii |
⊢ ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ) = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) |
47 |
14 46
|
eqtri |
⊢ 𝑆 = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) |
48 |
2 1 3 4 9 31 35 11 40 43 47
|
fourierdlem54 |
⊢ ( 𝜑 → ( ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ) ∧ 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) ) |
49 |
48
|
simpld |
⊢ ( 𝜑 → ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ) ) |
50 |
49
|
simprd |
⊢ ( 𝜑 → 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ) |
51 |
49
|
simpld |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
52 |
11
|
fourierdlem2 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ↔ ( 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑁 ) ) ∧ ( ( ( 𝑆 ‘ 0 ) = 𝐶 ∧ ( 𝑆 ‘ 𝑁 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
53 |
51 52
|
syl |
⊢ ( 𝜑 → ( 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ↔ ( 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑁 ) ) ∧ ( ( ( 𝑆 ‘ 0 ) = 𝐶 ∧ ( 𝑆 ‘ 𝑁 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
54 |
50 53
|
mpbid |
⊢ ( 𝜑 → ( 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑁 ) ) ∧ ( ( ( 𝑆 ‘ 0 ) = 𝐶 ∧ ( 𝑆 ‘ 𝑁 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ) |
55 |
54
|
simpld |
⊢ ( 𝜑 → 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑁 ) ) ) |
56 |
|
elmapi |
⊢ ( 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑁 ) ) → 𝑆 : ( 0 ... 𝑁 ) ⟶ ℝ ) |
57 |
55 56
|
syl |
⊢ ( 𝜑 → 𝑆 : ( 0 ... 𝑁 ) ⟶ ℝ ) |
58 |
|
elfzofz |
⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → 𝐽 ∈ ( 0 ... 𝑁 ) ) |
59 |
17 58
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ ( 0 ... 𝑁 ) ) |
60 |
57 59
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐽 ) ∈ ℝ ) |
61 |
29 60
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) |
62 |
27 61
|
sselid |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∈ ( 0 ... 𝑀 ) ) |
63 |
26 62
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ∈ ℝ ) |
64 |
63
|
rexrd |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ∈ ℝ* ) |
65 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) = ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) → ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ∈ ℝ* ) |
66 |
|
fzofzp1 |
⊢ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) → ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ∈ ( 0 ... 𝑀 ) ) |
67 |
61 66
|
syl |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ∈ ( 0 ... 𝑀 ) ) |
68 |
26 67
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ∈ ℝ ) |
69 |
68
|
rexrd |
⊢ ( 𝜑 → ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ∈ ℝ* ) |
70 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) = ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) → ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ∈ ℝ* ) |
71 |
1 3 4
|
fourierdlem11 |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ) |
72 |
71
|
simp1d |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
73 |
71
|
simp2d |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
74 |
72 73
|
iccssred |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
75 |
71
|
simp3d |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
76 |
72 73 75 16
|
fourierdlem17 |
⊢ ( 𝜑 → 𝑍 : ( 𝐴 (,] 𝐵 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
77 |
72 73 75 2 15
|
fourierdlem4 |
⊢ ( 𝜑 → 𝐸 : ℝ ⟶ ( 𝐴 (,] 𝐵 ) ) |
78 |
77 60
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ∈ ( 𝐴 (,] 𝐵 ) ) |
79 |
76 78
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ∈ ( 𝐴 [,] 𝐵 ) ) |
80 |
74 79
|
sseldd |
⊢ ( 𝜑 → ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ∈ ℝ ) |
81 |
80
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) = ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) → ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ∈ ℝ ) |
82 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) = ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) → ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ∈ ℝ ) |
83 |
72
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
84 |
|
iocssre |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐴 (,] 𝐵 ) ⊆ ℝ ) |
85 |
83 73 84
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 (,] 𝐵 ) ⊆ ℝ ) |
86 |
|
fzofzp1 |
⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → ( 𝐽 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
87 |
17 86
|
syl |
⊢ ( 𝜑 → ( 𝐽 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
88 |
57 87
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ℝ ) |
89 |
77 88
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ∈ ( 𝐴 (,] 𝐵 ) ) |
90 |
85 89
|
sseldd |
⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ∈ ℝ ) |
91 |
54
|
simprrd |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) |
92 |
|
fveq2 |
⊢ ( 𝑖 = 𝐽 → ( 𝑆 ‘ 𝑖 ) = ( 𝑆 ‘ 𝐽 ) ) |
93 |
|
oveq1 |
⊢ ( 𝑖 = 𝐽 → ( 𝑖 + 1 ) = ( 𝐽 + 1 ) ) |
94 |
93
|
fveq2d |
⊢ ( 𝑖 = 𝐽 → ( 𝑆 ‘ ( 𝑖 + 1 ) ) = ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
95 |
92 94
|
breq12d |
⊢ ( 𝑖 = 𝐽 → ( ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ↔ ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
96 |
95
|
rspccva |
⊢ ( ( ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
97 |
91 17 96
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
98 |
60 88
|
posdifd |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ↔ 0 < ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆 ‘ 𝐽 ) ) ) ) |
99 |
97 98
|
mpbid |
⊢ ( 𝜑 → 0 < ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆 ‘ 𝐽 ) ) ) |
100 |
17
|
ancli |
⊢ ( 𝜑 → ( 𝜑 ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ) |
101 |
|
eleq1 |
⊢ ( 𝑗 = 𝐽 → ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↔ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ) |
102 |
101
|
anbi2d |
⊢ ( 𝑗 = 𝐽 → ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ↔ ( 𝜑 ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ) ) |
103 |
|
oveq1 |
⊢ ( 𝑗 = 𝐽 → ( 𝑗 + 1 ) = ( 𝐽 + 1 ) ) |
104 |
103
|
fveq2d |
⊢ ( 𝑗 = 𝐽 → ( 𝑆 ‘ ( 𝑗 + 1 ) ) = ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
105 |
104
|
fveq2d |
⊢ ( 𝑗 = 𝐽 → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) = ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
106 |
|
fveq2 |
⊢ ( 𝑗 = 𝐽 → ( 𝑆 ‘ 𝑗 ) = ( 𝑆 ‘ 𝐽 ) ) |
107 |
106
|
fveq2d |
⊢ ( 𝑗 = 𝐽 → ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) |
108 |
107
|
fveq2d |
⊢ ( 𝑗 = 𝐽 → ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) = ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) |
109 |
105 108
|
oveq12d |
⊢ ( 𝑗 = 𝐽 → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) − ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) = ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) ) |
110 |
104 106
|
oveq12d |
⊢ ( 𝑗 = 𝐽 → ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆 ‘ 𝐽 ) ) ) |
111 |
109 110
|
eqeq12d |
⊢ ( 𝑗 = 𝐽 → ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) − ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) = ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) ↔ ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆 ‘ 𝐽 ) ) ) ) |
112 |
102 111
|
imbi12d |
⊢ ( 𝑗 = 𝐽 → ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) − ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) = ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) ) ↔ ( ( 𝜑 ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆 ‘ 𝐽 ) ) ) ) ) |
113 |
2
|
oveq2i |
⊢ ( 𝑘 · 𝑇 ) = ( 𝑘 · ( 𝐵 − 𝐴 ) ) |
114 |
113
|
oveq2i |
⊢ ( 𝑦 + ( 𝑘 · 𝑇 ) ) = ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) |
115 |
114
|
eleq1i |
⊢ ( ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ) |
116 |
115
|
rexbii |
⊢ ( ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ) |
117 |
116
|
rgenw |
⊢ ∀ 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ( ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ) |
118 |
|
rabbi |
⊢ ( ∀ 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ( ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ) ↔ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } = { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) |
119 |
117 118
|
mpbi |
⊢ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } = { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } |
120 |
119
|
uneq2i |
⊢ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) |
121 |
120
|
fveq2i |
⊢ ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) = ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) |
122 |
121
|
oveq1i |
⊢ ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) = ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) − 1 ) |
123 |
43 122
|
eqtri |
⊢ 𝑁 = ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) − 1 ) |
124 |
|
isoeq5 |
⊢ ( ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) → ( 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) ) ) |
125 |
120 124
|
ax-mp |
⊢ ( 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) ) |
126 |
125
|
iotabii |
⊢ ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) ) |
127 |
47 126
|
eqtri |
⊢ 𝑆 = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) ) |
128 |
|
eqid |
⊢ ( ( 𝑆 ‘ 𝑗 ) + ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) = ( ( 𝑆 ‘ 𝑗 ) + ( 𝐵 − ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) |
129 |
1 2 3 4 9 10 11 123 127 15 16 128
|
fourierdlem65 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) − ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) = ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) ) |
130 |
112 129
|
vtoclg |
⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → ( ( 𝜑 ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆 ‘ 𝐽 ) ) ) ) |
131 |
17 100 130
|
sylc |
⊢ ( 𝜑 → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆 ‘ 𝐽 ) ) ) |
132 |
99 131
|
breqtrrd |
⊢ ( 𝜑 → 0 < ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) ) |
133 |
80 90
|
posdifd |
⊢ ( 𝜑 → ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ↔ 0 < ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) ) ) |
134 |
132 133
|
mpbird |
⊢ ( 𝜑 → ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
135 |
|
id |
⊢ ( 𝜑 → 𝜑 ) |
136 |
108 105
|
oveq12d |
⊢ ( 𝑗 = 𝐽 → ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) = ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) |
137 |
106
|
fveq2d |
⊢ ( 𝑗 = 𝐽 → ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) = ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) |
138 |
137
|
fveq2d |
⊢ ( 𝑗 = 𝐽 → ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) = ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) |
139 |
137
|
oveq1d |
⊢ ( 𝑗 = 𝐽 → ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) = ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) |
140 |
139
|
fveq2d |
⊢ ( 𝑗 = 𝐽 → ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) |
141 |
138 140
|
oveq12d |
⊢ ( 𝑗 = 𝐽 → ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) = ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) |
142 |
136 141
|
sseq12d |
⊢ ( 𝑗 = 𝐽 → ( ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ⊆ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) ↔ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ⊆ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) ) |
143 |
102 142
|
imbi12d |
⊢ ( 𝑗 = 𝐽 → ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ⊆ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) ) ↔ ( ( 𝜑 ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ⊆ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) ) ) |
144 |
|
eqid |
⊢ ( ( 𝑆 ‘ 𝑗 ) + if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ) = ( ( 𝑆 ‘ 𝑗 ) + if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆 ‘ 𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ) |
145 |
2 1 3 4 9 31 35 11 40 43 47 15 16 144 19
|
fourierdlem79 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ⊆ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) ) ) |
146 |
143 145
|
vtoclg |
⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → ( ( 𝜑 ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ⊆ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) ) |
147 |
146
|
anabsi7 |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ⊆ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) |
148 |
135 17 147
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ⊆ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) |
149 |
63 68 80 90 134 148
|
fourierdlem10 |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ≤ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ≤ ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) |
150 |
149
|
simpld |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ≤ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) |
151 |
150
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) = ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) → ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ≤ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) |
152 |
|
neqne |
⊢ ( ¬ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) = ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) → ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ≠ ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) |
153 |
152
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) = ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) → ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ≠ ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) |
154 |
82 81 151 153
|
leneltd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) = ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) → ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) < ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) |
155 |
149
|
simprd |
⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ≤ ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) |
156 |
80 90 68 134 155
|
ltletrd |
⊢ ( 𝜑 → ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) < ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) |
157 |
156
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) = ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) → ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) < ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) |
158 |
65 70 81 154 157
|
eliood |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) = ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) → ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ∈ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) |
159 |
|
fvres |
⊢ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ∈ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) ‘ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) = ( 𝐹 ‘ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) ) |
160 |
158 159
|
syl |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) = ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) ‘ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) = ( 𝐹 ‘ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) ) |
161 |
160
|
eqcomd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) = ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) → ( 𝐹 ‘ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) ‘ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) ) |
162 |
161
|
ifeq2da |
⊢ ( 𝜑 → if ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) = ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) , ( 𝑉 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) , ( 𝐹 ‘ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) ) = if ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) = ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) , ( 𝑉 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) , ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) ‘ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) ) ) |
163 |
|
fdm |
⊢ ( 𝐹 : ℝ ⟶ ℂ → dom 𝐹 = ℝ ) |
164 |
5 163
|
syl |
⊢ ( 𝜑 → dom 𝐹 = ℝ ) |
165 |
164
|
feq2d |
⊢ ( 𝜑 → ( 𝐹 : dom 𝐹 ⟶ ℂ ↔ 𝐹 : ℝ ⟶ ℂ ) ) |
166 |
5 165
|
mpbird |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ℂ ) |
167 |
|
ioosscn |
⊢ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ⊆ ℂ |
168 |
167
|
a1i |
⊢ ( 𝜑 → ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ⊆ ℂ ) |
169 |
|
ioossre |
⊢ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ⊆ ℝ |
170 |
169 164
|
sseqtrrid |
⊢ ( 𝜑 → ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ⊆ dom 𝐹 ) |
171 |
88 90
|
resubcld |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ∈ ℝ ) |
172 |
18 171
|
eqeltrid |
⊢ ( 𝜑 → 𝑈 ∈ ℝ ) |
173 |
172
|
recnd |
⊢ ( 𝜑 → 𝑈 ∈ ℂ ) |
174 |
|
eqid |
⊢ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) 𝑥 = ( 𝑦 + 𝑈 ) } = { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) 𝑥 = ( 𝑦 + 𝑈 ) } |
175 |
80 90 172
|
iooshift |
⊢ ( 𝜑 → ( ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) + 𝑈 ) (,) ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) + 𝑈 ) ) = { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) 𝑥 = ( 𝑦 + 𝑈 ) } ) |
176 |
|
ioossre |
⊢ ( ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) + 𝑈 ) (,) ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) + 𝑈 ) ) ⊆ ℝ |
177 |
176 164
|
sseqtrrid |
⊢ ( 𝜑 → ( ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) + 𝑈 ) (,) ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) + 𝑈 ) ) ⊆ dom 𝐹 ) |
178 |
175 177
|
eqsstrrd |
⊢ ( 𝜑 → { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) 𝑥 = ( 𝑦 + 𝑈 ) } ⊆ dom 𝐹 ) |
179 |
|
elioore |
⊢ ( 𝑦 ∈ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → 𝑦 ∈ ℝ ) |
180 |
73 72
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
181 |
2 180
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
182 |
181
|
recnd |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
183 |
72 73
|
posdifd |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵 − 𝐴 ) ) ) |
184 |
75 183
|
mpbid |
⊢ ( 𝜑 → 0 < ( 𝐵 − 𝐴 ) ) |
185 |
184 2
|
breqtrrdi |
⊢ ( 𝜑 → 0 < 𝑇 ) |
186 |
185
|
gt0ne0d |
⊢ ( 𝜑 → 𝑇 ≠ 0 ) |
187 |
173 182 186
|
divcan1d |
⊢ ( 𝜑 → ( ( 𝑈 / 𝑇 ) · 𝑇 ) = 𝑈 ) |
188 |
187
|
eqcomd |
⊢ ( 𝜑 → 𝑈 = ( ( 𝑈 / 𝑇 ) · 𝑇 ) ) |
189 |
188
|
oveq2d |
⊢ ( 𝜑 → ( 𝑦 + 𝑈 ) = ( 𝑦 + ( ( 𝑈 / 𝑇 ) · 𝑇 ) ) ) |
190 |
189
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑦 + 𝑈 ) = ( 𝑦 + ( ( 𝑈 / 𝑇 ) · 𝑇 ) ) ) |
191 |
190
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑦 + 𝑈 ) ) = ( 𝐹 ‘ ( 𝑦 + ( ( 𝑈 / 𝑇 ) · 𝑇 ) ) ) ) |
192 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝐹 : ℝ ⟶ ℂ ) |
193 |
181
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑇 ∈ ℝ ) |
194 |
90
|
recnd |
⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ∈ ℂ ) |
195 |
88
|
recnd |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ℂ ) |
196 |
194 195
|
negsubdi2d |
⊢ ( 𝜑 → - ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) |
197 |
196
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) = - ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
198 |
197
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) / 𝑇 ) = ( - ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) |
199 |
18
|
oveq1i |
⊢ ( 𝑈 / 𝑇 ) = ( ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) / 𝑇 ) |
200 |
199
|
a1i |
⊢ ( 𝜑 → ( 𝑈 / 𝑇 ) = ( ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) / 𝑇 ) ) |
201 |
15
|
a1i |
⊢ ( 𝜑 → 𝐸 = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) ) |
202 |
|
id |
⊢ ( 𝑥 = ( 𝑆 ‘ ( 𝐽 + 1 ) ) → 𝑥 = ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
203 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑆 ‘ ( 𝐽 + 1 ) ) → ( 𝐵 − 𝑥 ) = ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
204 |
203
|
oveq1d |
⊢ ( 𝑥 = ( 𝑆 ‘ ( 𝐽 + 1 ) ) → ( ( 𝐵 − 𝑥 ) / 𝑇 ) = ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) |
205 |
204
|
fveq2d |
⊢ ( 𝑥 = ( 𝑆 ‘ ( 𝐽 + 1 ) ) → ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) = ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) ) |
206 |
205
|
oveq1d |
⊢ ( 𝑥 = ( 𝑆 ‘ ( 𝐽 + 1 ) ) → ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) = ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) |
207 |
202 206
|
oveq12d |
⊢ ( 𝑥 = ( 𝑆 ‘ ( 𝐽 + 1 ) ) → ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) ) |
208 |
207
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) → ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) ) |
209 |
73 88
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ∈ ℝ ) |
210 |
209 181 186
|
redivcld |
⊢ ( 𝜑 → ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ∈ ℝ ) |
211 |
210
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) ∈ ℤ ) |
212 |
211
|
zred |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) ∈ ℝ ) |
213 |
212 181
|
remulcld |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ∈ ℝ ) |
214 |
88 213
|
readdcld |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) ∈ ℝ ) |
215 |
201 208 88 214
|
fvmptd |
⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) ) |
216 |
215
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
217 |
212
|
recnd |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) ∈ ℂ ) |
218 |
217 182
|
mulcld |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ∈ ℂ ) |
219 |
195 218
|
pncan2d |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) |
220 |
216 219
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) |
221 |
220 218
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ∈ ℂ ) |
222 |
221 182 186
|
divnegd |
⊢ ( 𝜑 → - ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) = ( - ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) |
223 |
198 200 222
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑈 / 𝑇 ) = - ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) |
224 |
220
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) = ( ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) / 𝑇 ) ) |
225 |
217 182 186
|
divcan4d |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) / 𝑇 ) = ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) ) |
226 |
224 225
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) = ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) ) |
227 |
226 211
|
eqeltrd |
⊢ ( 𝜑 → ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ∈ ℤ ) |
228 |
227
|
znegcld |
⊢ ( 𝜑 → - ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ∈ ℤ ) |
229 |
223 228
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑈 / 𝑇 ) ∈ ℤ ) |
230 |
229
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑈 / 𝑇 ) ∈ ℤ ) |
231 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
232 |
6
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
233 |
192 193 230 231 232
|
fperiodmul |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑦 + ( ( 𝑈 / 𝑇 ) · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑦 ) ) |
234 |
191 233
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑦 + 𝑈 ) ) = ( 𝐹 ‘ 𝑦 ) ) |
235 |
179 234
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) → ( 𝐹 ‘ ( 𝑦 + 𝑈 ) ) = ( 𝐹 ‘ 𝑦 ) ) |
236 |
23
|
simprrd |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
237 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) |
238 |
|
oveq1 |
⊢ ( 𝑖 = ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) → ( 𝑖 + 1 ) = ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) |
239 |
238
|
fveq2d |
⊢ ( 𝑖 = ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) |
240 |
237 239
|
breq12d |
⊢ ( 𝑖 = ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) → ( ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ↔ ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) < ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) |
241 |
240
|
rspccva |
⊢ ( ( ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∧ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) < ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) |
242 |
236 61 241
|
syl2anc |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) < ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) |
243 |
61
|
ancli |
⊢ ( 𝜑 → ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) ) |
244 |
|
eleq1 |
⊢ ( 𝑖 = ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↔ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) ) |
245 |
244
|
anbi2d |
⊢ ( 𝑖 = ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) → ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ↔ ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) ) ) |
246 |
237 239
|
oveq12d |
⊢ ( 𝑖 = ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) |
247 |
246
|
reseq2d |
⊢ ( 𝑖 = ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) ) |
248 |
246
|
oveq1d |
⊢ ( 𝑖 = ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) → ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) = ( ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) –cn→ ℂ ) ) |
249 |
247 248
|
eleq12d |
⊢ ( 𝑖 = ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ↔ ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) –cn→ ℂ ) ) ) |
250 |
245 249
|
imbi12d |
⊢ ( 𝑖 = ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) → ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) ↔ ( ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) –cn→ ℂ ) ) ) ) |
251 |
250 7
|
vtoclg |
⊢ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) → ( ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) –cn→ ℂ ) ) ) |
252 |
61 243 251
|
sylc |
⊢ ( 𝜑 → ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) –cn→ ℂ ) ) |
253 |
|
nfv |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) |
254 |
|
nfmpt1 |
⊢ Ⅎ 𝑖 ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ 𝑅 ) |
255 |
20 254
|
nfcxfr |
⊢ Ⅎ 𝑖 𝑉 |
256 |
|
nfcv |
⊢ Ⅎ 𝑖 ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) |
257 |
255 256
|
nffv |
⊢ Ⅎ 𝑖 ( 𝑉 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) |
258 |
257
|
nfel1 |
⊢ Ⅎ 𝑖 ( 𝑉 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) |
259 |
253 258
|
nfim |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) ) |
260 |
245
|
biimpar |
⊢ ( ( 𝑖 = ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∧ ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) ) → ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ) |
261 |
260
|
3adant2 |
⊢ ( ( 𝑖 = ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∧ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) ∧ ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) ) → ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ) |
262 |
261 8
|
syl |
⊢ ( ( 𝑖 = ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∧ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) ∧ ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
263 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) → ( 𝑉 ‘ 𝑖 ) = ( 𝑉 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) |
264 |
263
|
eqcomd |
⊢ ( 𝑖 = ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) → ( 𝑉 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) = ( 𝑉 ‘ 𝑖 ) ) |
265 |
264
|
adantr |
⊢ ( ( 𝑖 = ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∧ ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) ) → ( 𝑉 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) = ( 𝑉 ‘ 𝑖 ) ) |
266 |
260
|
simprd |
⊢ ( ( 𝑖 = ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∧ ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
267 |
|
elex |
⊢ ( 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) → 𝑅 ∈ V ) |
268 |
260 8 267
|
3syl |
⊢ ( ( 𝑖 = ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∧ ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) ) → 𝑅 ∈ V ) |
269 |
20
|
fvmpt2 |
⊢ ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑅 ∈ V ) → ( 𝑉 ‘ 𝑖 ) = 𝑅 ) |
270 |
266 268 269
|
syl2anc |
⊢ ( ( 𝑖 = ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∧ ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) ) → ( 𝑉 ‘ 𝑖 ) = 𝑅 ) |
271 |
265 270
|
eqtrd |
⊢ ( ( 𝑖 = ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∧ ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) ) → ( 𝑉 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) = 𝑅 ) |
272 |
271
|
3adant2 |
⊢ ( ( 𝑖 = ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∧ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) ∧ ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) ) → ( 𝑉 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) = 𝑅 ) |
273 |
247 237
|
oveq12d |
⊢ ( 𝑖 = ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) ) |
274 |
273
|
eqcomd |
⊢ ( 𝑖 = ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
275 |
274
|
3ad2ant1 |
⊢ ( ( 𝑖 = ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∧ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) ∧ ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
276 |
262 272 275
|
3eltr4d |
⊢ ( ( 𝑖 = ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∧ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) ∧ ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) ) → ( 𝑉 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) ) |
277 |
276
|
3exp |
⊢ ( 𝑖 = ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) → ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) → ( ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) ) ) ) |
278 |
8
|
2a1i |
⊢ ( 𝑖 = ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) → ( ( ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) ) → ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) ) ) |
279 |
277 278
|
impbid |
⊢ ( 𝑖 = ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) → ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) ↔ ( ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) ) ) ) |
280 |
259 279 8
|
vtoclg1f |
⊢ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) → ( ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) ) ) |
281 |
61 243 280
|
sylc |
⊢ ( 𝜑 → ( 𝑉 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) ) |
282 |
|
eqid |
⊢ if ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) = ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) , ( 𝑉 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) , ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) ‘ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) ) = if ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) = ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) , ( 𝑉 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) , ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) ‘ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) ) |
283 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) [,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) [,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) |
284 |
63 68 242 252 281 80 90 134 148 282 283
|
fourierdlem32 |
⊢ ( 𝜑 → if ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) = ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) , ( 𝑉 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) , ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) ‘ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) ) ∈ ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) ↾ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) limℂ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) ) |
285 |
148
|
resabs1d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) ↾ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) = ( 𝐹 ↾ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) ) |
286 |
285
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) ↾ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) limℂ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) = ( ( 𝐹 ↾ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) limℂ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) ) |
287 |
284 286
|
eleqtrd |
⊢ ( 𝜑 → if ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) = ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) , ( 𝑉 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) , ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) ‘ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) limℂ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) ) |
288 |
166 168 170 173 174 178 235 287
|
limcperiod |
⊢ ( 𝜑 → if ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) = ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) , ( 𝑉 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) , ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) ‘ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) ) ∈ ( ( 𝐹 ↾ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) 𝑥 = ( 𝑦 + 𝑈 ) } ) limℂ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) + 𝑈 ) ) ) |
289 |
18
|
oveq2i |
⊢ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) + 𝑈 ) = ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) + ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) |
290 |
289
|
a1i |
⊢ ( 𝜑 → ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) + 𝑈 ) = ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) + ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) ) |
291 |
9 31
|
iccssred |
⊢ ( 𝜑 → ( 𝐶 [,] 𝐷 ) ⊆ ℝ ) |
292 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
293 |
291 292
|
sstrdi |
⊢ ( 𝜑 → ( 𝐶 [,] 𝐷 ) ⊆ ℂ ) |
294 |
11 51 50
|
fourierdlem15 |
⊢ ( 𝜑 → 𝑆 : ( 0 ... 𝑁 ) ⟶ ( 𝐶 [,] 𝐷 ) ) |
295 |
294 59
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐽 ) ∈ ( 𝐶 [,] 𝐷 ) ) |
296 |
293 295
|
sseldd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐽 ) ∈ ℂ ) |
297 |
195 296
|
subcld |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆 ‘ 𝐽 ) ) ∈ ℂ ) |
298 |
80
|
recnd |
⊢ ( 𝜑 → ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ∈ ℂ ) |
299 |
194 297 298
|
subsub23d |
⊢ ( 𝜑 → ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆 ‘ 𝐽 ) ) ) = ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ↔ ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆 ‘ 𝐽 ) ) ) ) |
300 |
131 299
|
mpbird |
⊢ ( 𝜑 → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆 ‘ 𝐽 ) ) ) = ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) |
301 |
300
|
eqcomd |
⊢ ( 𝜑 → ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) = ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆 ‘ 𝐽 ) ) ) ) |
302 |
301
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) + ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) = ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆 ‘ 𝐽 ) ) ) + ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) ) |
303 |
194 297
|
subcld |
⊢ ( 𝜑 → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆 ‘ 𝐽 ) ) ) ∈ ℂ ) |
304 |
303 195 194
|
addsub12d |
⊢ ( 𝜑 → ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆 ‘ 𝐽 ) ) ) + ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆 ‘ 𝐽 ) ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) ) |
305 |
194 297 194
|
sub32d |
⊢ ( 𝜑 → ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆 ‘ 𝐽 ) ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) = ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) − ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆 ‘ 𝐽 ) ) ) ) |
306 |
194
|
subidd |
⊢ ( 𝜑 → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) = 0 ) |
307 |
306
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) − ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆 ‘ 𝐽 ) ) ) = ( 0 − ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆 ‘ 𝐽 ) ) ) ) |
308 |
|
df-neg |
⊢ - ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆 ‘ 𝐽 ) ) = ( 0 − ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆 ‘ 𝐽 ) ) ) |
309 |
195 296
|
negsubdi2d |
⊢ ( 𝜑 → - ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆 ‘ 𝐽 ) ) = ( ( 𝑆 ‘ 𝐽 ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
310 |
308 309
|
eqtr3id |
⊢ ( 𝜑 → ( 0 − ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆 ‘ 𝐽 ) ) ) = ( ( 𝑆 ‘ 𝐽 ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
311 |
305 307 310
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆 ‘ 𝐽 ) ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) = ( ( 𝑆 ‘ 𝐽 ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
312 |
311
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆 ‘ 𝐽 ) ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( 𝑆 ‘ 𝐽 ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) |
313 |
195 296
|
pncan3d |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( 𝑆 ‘ 𝐽 ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) = ( 𝑆 ‘ 𝐽 ) ) |
314 |
304 312 313
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆 ‘ 𝐽 ) ) ) + ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) = ( 𝑆 ‘ 𝐽 ) ) |
315 |
290 302 314
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) + 𝑈 ) = ( 𝑆 ‘ 𝐽 ) ) |
316 |
315
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) 𝑥 = ( 𝑦 + 𝑈 ) } ) limℂ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) + 𝑈 ) ) = ( ( 𝐹 ↾ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) 𝑥 = ( 𝑦 + 𝑈 ) } ) limℂ ( 𝑆 ‘ 𝐽 ) ) ) |
317 |
288 316
|
eleqtrd |
⊢ ( 𝜑 → if ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) = ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) , ( 𝑉 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) , ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) ‘ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) ) ∈ ( ( 𝐹 ↾ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) 𝑥 = ( 𝑦 + 𝑈 ) } ) limℂ ( 𝑆 ‘ 𝐽 ) ) ) |
318 |
18
|
oveq2i |
⊢ ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) + 𝑈 ) = ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) + ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) |
319 |
194 195
|
pncan3d |
⊢ ( 𝜑 → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) + ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) = ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
320 |
318 319
|
syl5eq |
⊢ ( 𝜑 → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) + 𝑈 ) = ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
321 |
315 320
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) + 𝑈 ) (,) ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) + 𝑈 ) ) = ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
322 |
175 321
|
eqtr3d |
⊢ ( 𝜑 → { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) 𝑥 = ( 𝑦 + 𝑈 ) } = ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
323 |
322
|
reseq2d |
⊢ ( 𝜑 → ( 𝐹 ↾ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) 𝑥 = ( 𝑦 + 𝑈 ) } ) = ( 𝐹 ↾ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) |
324 |
323
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) 𝑥 = ( 𝑦 + 𝑈 ) } ) limℂ ( 𝑆 ‘ 𝐽 ) ) = ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) limℂ ( 𝑆 ‘ 𝐽 ) ) ) |
325 |
317 324
|
eleqtrd |
⊢ ( 𝜑 → if ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) = ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) , ( 𝑉 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) , ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) + 1 ) ) ) ) ‘ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) limℂ ( 𝑆 ‘ 𝐽 ) ) ) |
326 |
162 325
|
eqeltrd |
⊢ ( 𝜑 → if ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) = ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) , ( 𝑉 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) , ( 𝐹 ‘ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) limℂ ( 𝑆 ‘ 𝐽 ) ) ) |