Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem9.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
2 |
|
fourierdlem9.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
3 |
|
fourierdlem9.r |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
4 |
|
fourierdlem9.w |
⊢ ( 𝜑 → 𝑊 ∈ ℝ ) |
5 |
|
fourierdlem9.h |
⊢ 𝐻 = ( 𝑠 ∈ ( - π [,] π ) ↦ if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) ) |
6 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) ∧ 𝑠 = 0 ) → 0 ∈ ℝ ) |
7 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → 𝐹 : ℝ ⟶ ℝ ) |
8 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → 𝑋 ∈ ℝ ) |
9 |
|
pire |
⊢ π ∈ ℝ |
10 |
9
|
renegcli |
⊢ - π ∈ ℝ |
11 |
|
iccssre |
⊢ ( ( - π ∈ ℝ ∧ π ∈ ℝ ) → ( - π [,] π ) ⊆ ℝ ) |
12 |
10 9 11
|
mp2an |
⊢ ( - π [,] π ) ⊆ ℝ |
13 |
12
|
sseli |
⊢ ( 𝑠 ∈ ( - π [,] π ) → 𝑠 ∈ ℝ ) |
14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → 𝑠 ∈ ℝ ) |
15 |
8 14
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
16 |
7 15
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℝ ) |
17 |
16
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) ∧ ¬ 𝑠 = 0 ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℝ ) |
18 |
3 4
|
ifcld |
⊢ ( 𝜑 → if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ∈ ℝ ) |
19 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) ∧ ¬ 𝑠 = 0 ) → if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ∈ ℝ ) |
20 |
17 19
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) ∧ ¬ 𝑠 = 0 ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) ∈ ℝ ) |
21 |
14
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) ∧ ¬ 𝑠 = 0 ) → 𝑠 ∈ ℝ ) |
22 |
|
neqne |
⊢ ( ¬ 𝑠 = 0 → 𝑠 ≠ 0 ) |
23 |
22
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) ∧ ¬ 𝑠 = 0 ) → 𝑠 ≠ 0 ) |
24 |
20 21 23
|
redivcld |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) ∧ ¬ 𝑠 = 0 ) → ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ∈ ℝ ) |
25 |
6 24
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) ∈ ℝ ) |
26 |
25 5
|
fmptd |
⊢ ( 𝜑 → 𝐻 : ( - π [,] π ) ⟶ ℝ ) |