| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fourierdlem92.a | 
							⊢ ( 𝜑  →  𝐴  ∈  ℝ )  | 
						
						
							| 2 | 
							
								
							 | 
							fourierdlem92.b | 
							⊢ ( 𝜑  →  𝐵  ∈  ℝ )  | 
						
						
							| 3 | 
							
								
							 | 
							fourierdlem92.p | 
							⊢ 𝑃  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  𝐴  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } )  | 
						
						
							| 4 | 
							
								
							 | 
							fourierdlem92.m | 
							⊢ ( 𝜑  →  𝑀  ∈  ℕ )  | 
						
						
							| 5 | 
							
								
							 | 
							fourierdlem92.t | 
							⊢ ( 𝜑  →  𝑇  ∈  ℝ )  | 
						
						
							| 6 | 
							
								
							 | 
							fourierdlem92.q | 
							⊢ ( 𝜑  →  𝑄  ∈  ( 𝑃 ‘ 𝑀 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							fourierdlem92.fper | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							fourierdlem92.s | 
							⊢ 𝑆  =  ( 𝑖  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							fourierdlem92.h | 
							⊢ 𝐻  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  +  𝑇 )  ∧  ( 𝑝 ‘ 𝑚 )  =  ( 𝐵  +  𝑇 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } )  | 
						
						
							| 10 | 
							
								
							 | 
							fourierdlem92.f | 
							⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℂ )  | 
						
						
							| 11 | 
							
								
							 | 
							fourierdlem92.cncf | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) )  | 
						
						
							| 12 | 
							
								
							 | 
							fourierdlem92.r | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑅  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							fourierdlem92.l | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  | 
						
						
							| 14 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  0  <  𝑇 )  →  𝐴  ∈  ℝ )  | 
						
						
							| 15 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  0  <  𝑇 )  →  𝐵  ∈  ℝ )  | 
						
						
							| 16 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  0  <  𝑇 )  →  𝑀  ∈  ℕ )  | 
						
						
							| 17 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  0  <  𝑇 )  →  𝑇  ∈  ℝ )  | 
						
						
							| 18 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  0  <  𝑇 )  →  0  <  𝑇 )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							elrpd | 
							⊢ ( ( 𝜑  ∧  0  <  𝑇 )  →  𝑇  ∈  ℝ+ )  | 
						
						
							| 20 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  0  <  𝑇 )  →  𝑄  ∈  ( 𝑃 ‘ 𝑀 ) )  | 
						
						
							| 21 | 
							
								7
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  0  <  𝑇 )  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑗  =  𝑖  →  ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ 𝑖 ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							oveq1d | 
							⊢ ( 𝑗  =  𝑖  →  ( ( 𝑄 ‘ 𝑗 )  +  𝑇 )  =  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							cbvmptv | 
							⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑗 )  +  𝑇 ) )  =  ( 𝑖  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) )  | 
						
						
							| 25 | 
							
								10
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  0  <  𝑇 )  →  𝐹 : ℝ ⟶ ℂ )  | 
						
						
							| 26 | 
							
								11
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  0  <  𝑇 )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) )  | 
						
						
							| 27 | 
							
								12
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  0  <  𝑇 )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑅  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) )  | 
						
						
							| 28 | 
							
								13
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  0  <  𝑇 )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  | 
						
						
							| 29 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑦  =  𝑥  →  ( 𝑦  =  ( 𝑄 ‘ 𝑖 )  ↔  𝑥  =  ( 𝑄 ‘ 𝑖 ) ) )  | 
						
						
							| 30 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑦  =  𝑥  →  ( 𝑦  =  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ↔  𝑥  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  | 
						
						
							| 31 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑦  =  𝑥  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 32 | 
							
								30 31
							 | 
							ifbieq2d | 
							⊢ ( 𝑦  =  𝑥  →  if ( 𝑦  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( 𝐹 ‘ 𝑦 ) )  =  if ( 𝑥  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  | 
						
						
							| 33 | 
							
								29 32
							 | 
							ifbieq2d | 
							⊢ ( 𝑦  =  𝑥  →  if ( 𝑦  =  ( 𝑄 ‘ 𝑖 ) ,  𝑅 ,  if ( 𝑦  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( 𝐹 ‘ 𝑦 ) ) )  =  if ( 𝑥  =  ( 𝑄 ‘ 𝑖 ) ,  𝑅 ,  if ( 𝑥  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							cbvmptv | 
							⊢ ( 𝑦  ∈  ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  if ( 𝑦  =  ( 𝑄 ‘ 𝑖 ) ,  𝑅 ,  if ( 𝑦  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( 𝐹 ‘ 𝑦 ) ) ) )  =  ( 𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  if ( 𝑥  =  ( 𝑄 ‘ 𝑖 ) ,  𝑅 ,  if ( 𝑥  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) ) )  | 
						
						
							| 35 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑥  ∈  ( ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑗 )  +  𝑇 ) ) ‘ 𝑖 ) [,] ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑗 )  +  𝑇 ) ) ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝑦  ∈  ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  if ( 𝑦  =  ( 𝑄 ‘ 𝑖 ) ,  𝑅 ,  if ( 𝑦  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( 𝐹 ‘ 𝑦 ) ) ) ) ‘ ( 𝑥  −  𝑇 ) ) )  =  ( 𝑥  ∈  ( ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑗 )  +  𝑇 ) ) ‘ 𝑖 ) [,] ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑗 )  +  𝑇 ) ) ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝑦  ∈  ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  if ( 𝑦  =  ( 𝑄 ‘ 𝑖 ) ,  𝑅 ,  if ( 𝑦  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( 𝐹 ‘ 𝑦 ) ) ) ) ‘ ( 𝑥  −  𝑇 ) ) )  | 
						
						
							| 36 | 
							
								14 15 3 16 19 20 21 24 25 26 27 28 34 35
							 | 
							fourierdlem81 | 
							⊢ ( ( 𝜑  ∧  0  <  𝑇 )  →  ∫ ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  | 
						
						
							| 37 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑇  =  0 )  →  𝑇  =  0 )  | 
						
						
							| 38 | 
							
								37
							 | 
							oveq2d | 
							⊢ ( ( 𝜑  ∧  𝑇  =  0 )  →  ( 𝐴  +  𝑇 )  =  ( 𝐴  +  0 ) )  | 
						
						
							| 39 | 
							
								1
							 | 
							recnd | 
							⊢ ( 𝜑  →  𝐴  ∈  ℂ )  | 
						
						
							| 40 | 
							
								39
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑇  =  0 )  →  𝐴  ∈  ℂ )  | 
						
						
							| 41 | 
							
								40
							 | 
							addridd | 
							⊢ ( ( 𝜑  ∧  𝑇  =  0 )  →  ( 𝐴  +  0 )  =  𝐴 )  | 
						
						
							| 42 | 
							
								38 41
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑇  =  0 )  →  ( 𝐴  +  𝑇 )  =  𝐴 )  | 
						
						
							| 43 | 
							
								37
							 | 
							oveq2d | 
							⊢ ( ( 𝜑  ∧  𝑇  =  0 )  →  ( 𝐵  +  𝑇 )  =  ( 𝐵  +  0 ) )  | 
						
						
							| 44 | 
							
								2
							 | 
							recnd | 
							⊢ ( 𝜑  →  𝐵  ∈  ℂ )  | 
						
						
							| 45 | 
							
								44
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑇  =  0 )  →  𝐵  ∈  ℂ )  | 
						
						
							| 46 | 
							
								45
							 | 
							addridd | 
							⊢ ( ( 𝜑  ∧  𝑇  =  0 )  →  ( 𝐵  +  0 )  =  𝐵 )  | 
						
						
							| 47 | 
							
								43 46
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑇  =  0 )  →  ( 𝐵  +  𝑇 )  =  𝐵 )  | 
						
						
							| 48 | 
							
								42 47
							 | 
							oveq12d | 
							⊢ ( ( 𝜑  ∧  𝑇  =  0 )  →  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) )  =  ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							itgeq1d | 
							⊢ ( ( 𝜑  ∧  𝑇  =  0 )  →  ∫ ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  | 
						
						
							| 50 | 
							
								49
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  ¬  0  <  𝑇 )  ∧  𝑇  =  0 )  →  ∫ ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  | 
						
						
							| 51 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝜑  ∧  ¬  0  <  𝑇 )  ∧  ¬  𝑇  =  0 )  →  𝜑 )  | 
						
						
							| 52 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  ∧  ¬  0  <  𝑇 )  ∧  ¬  𝑇  =  0 )  →  ¬  𝑇  =  0 )  | 
						
						
							| 53 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝜑  ∧  ¬  0  <  𝑇 )  ∧  ¬  𝑇  =  0 )  →  ¬  0  <  𝑇 )  | 
						
						
							| 54 | 
							
								
							 | 
							ioran | 
							⊢ ( ¬  ( 𝑇  =  0  ∨  0  <  𝑇 )  ↔  ( ¬  𝑇  =  0  ∧  ¬  0  <  𝑇 ) )  | 
						
						
							| 55 | 
							
								52 53 54
							 | 
							sylanbrc | 
							⊢ ( ( ( 𝜑  ∧  ¬  0  <  𝑇 )  ∧  ¬  𝑇  =  0 )  →  ¬  ( 𝑇  =  0  ∨  0  <  𝑇 ) )  | 
						
						
							| 56 | 
							
								51 5
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  ¬  0  <  𝑇 )  ∧  ¬  𝑇  =  0 )  →  𝑇  ∈  ℝ )  | 
						
						
							| 57 | 
							
								
							 | 
							0red | 
							⊢ ( ( ( 𝜑  ∧  ¬  0  <  𝑇 )  ∧  ¬  𝑇  =  0 )  →  0  ∈  ℝ )  | 
						
						
							| 58 | 
							
								56 57
							 | 
							lttrid | 
							⊢ ( ( ( 𝜑  ∧  ¬  0  <  𝑇 )  ∧  ¬  𝑇  =  0 )  →  ( 𝑇  <  0  ↔  ¬  ( 𝑇  =  0  ∨  0  <  𝑇 ) ) )  | 
						
						
							| 59 | 
							
								55 58
							 | 
							mpbird | 
							⊢ ( ( ( 𝜑  ∧  ¬  0  <  𝑇 )  ∧  ¬  𝑇  =  0 )  →  𝑇  <  0 )  | 
						
						
							| 60 | 
							
								56
							 | 
							lt0neg1d | 
							⊢ ( ( ( 𝜑  ∧  ¬  0  <  𝑇 )  ∧  ¬  𝑇  =  0 )  →  ( 𝑇  <  0  ↔  0  <  - 𝑇 ) )  | 
						
						
							| 61 | 
							
								59 60
							 | 
							mpbid | 
							⊢ ( ( ( 𝜑  ∧  ¬  0  <  𝑇 )  ∧  ¬  𝑇  =  0 )  →  0  <  - 𝑇 )  | 
						
						
							| 62 | 
							
								1 5
							 | 
							readdcld | 
							⊢ ( 𝜑  →  ( 𝐴  +  𝑇 )  ∈  ℝ )  | 
						
						
							| 63 | 
							
								62
							 | 
							recnd | 
							⊢ ( 𝜑  →  ( 𝐴  +  𝑇 )  ∈  ℂ )  | 
						
						
							| 64 | 
							
								5
							 | 
							recnd | 
							⊢ ( 𝜑  →  𝑇  ∈  ℂ )  | 
						
						
							| 65 | 
							
								63 64
							 | 
							negsubd | 
							⊢ ( 𝜑  →  ( ( 𝐴  +  𝑇 )  +  - 𝑇 )  =  ( ( 𝐴  +  𝑇 )  −  𝑇 ) )  | 
						
						
							| 66 | 
							
								39 64
							 | 
							pncand | 
							⊢ ( 𝜑  →  ( ( 𝐴  +  𝑇 )  −  𝑇 )  =  𝐴 )  | 
						
						
							| 67 | 
							
								65 66
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( ( 𝐴  +  𝑇 )  +  - 𝑇 )  =  𝐴 )  | 
						
						
							| 68 | 
							
								2 5
							 | 
							readdcld | 
							⊢ ( 𝜑  →  ( 𝐵  +  𝑇 )  ∈  ℝ )  | 
						
						
							| 69 | 
							
								68
							 | 
							recnd | 
							⊢ ( 𝜑  →  ( 𝐵  +  𝑇 )  ∈  ℂ )  | 
						
						
							| 70 | 
							
								69 64
							 | 
							negsubd | 
							⊢ ( 𝜑  →  ( ( 𝐵  +  𝑇 )  +  - 𝑇 )  =  ( ( 𝐵  +  𝑇 )  −  𝑇 ) )  | 
						
						
							| 71 | 
							
								44 64
							 | 
							pncand | 
							⊢ ( 𝜑  →  ( ( 𝐵  +  𝑇 )  −  𝑇 )  =  𝐵 )  | 
						
						
							| 72 | 
							
								70 71
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( ( 𝐵  +  𝑇 )  +  - 𝑇 )  =  𝐵 )  | 
						
						
							| 73 | 
							
								67 72
							 | 
							oveq12d | 
							⊢ ( 𝜑  →  ( ( ( 𝐴  +  𝑇 )  +  - 𝑇 ) [,] ( ( 𝐵  +  𝑇 )  +  - 𝑇 ) )  =  ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 74 | 
							
								73
							 | 
							eqcomd | 
							⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  =  ( ( ( 𝐴  +  𝑇 )  +  - 𝑇 ) [,] ( ( 𝐵  +  𝑇 )  +  - 𝑇 ) ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							itgeq1d | 
							⊢ ( 𝜑  →  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( ( ( 𝐴  +  𝑇 )  +  - 𝑇 ) [,] ( ( 𝐵  +  𝑇 )  +  - 𝑇 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  | 
						
						
							| 76 | 
							
								75
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  0  <  - 𝑇 )  →  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( ( ( 𝐴  +  𝑇 )  +  - 𝑇 ) [,] ( ( 𝐵  +  𝑇 )  +  - 𝑇 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  | 
						
						
							| 77 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  0  <  - 𝑇 )  →  𝐴  ∈  ℝ )  | 
						
						
							| 78 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  0  <  - 𝑇 )  →  𝑇  ∈  ℝ )  | 
						
						
							| 79 | 
							
								77 78
							 | 
							readdcld | 
							⊢ ( ( 𝜑  ∧  0  <  - 𝑇 )  →  ( 𝐴  +  𝑇 )  ∈  ℝ )  | 
						
						
							| 80 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  0  <  - 𝑇 )  →  𝐵  ∈  ℝ )  | 
						
						
							| 81 | 
							
								80 78
							 | 
							readdcld | 
							⊢ ( ( 𝜑  ∧  0  <  - 𝑇 )  →  ( 𝐵  +  𝑇 )  ∈  ℝ )  | 
						
						
							| 82 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  +  𝑇 )  ∧  ( 𝑝 ‘ 𝑚 )  =  ( 𝐵  +  𝑇 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } )  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  +  𝑇 )  ∧  ( 𝑝 ‘ 𝑚 )  =  ( 𝐵  +  𝑇 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } )  | 
						
						
							| 83 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  0  <  - 𝑇 )  →  𝑀  ∈  ℕ )  | 
						
						
							| 84 | 
							
								78
							 | 
							renegcld | 
							⊢ ( ( 𝜑  ∧  0  <  - 𝑇 )  →  - 𝑇  ∈  ℝ )  | 
						
						
							| 85 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  0  <  - 𝑇 )  →  0  <  - 𝑇 )  | 
						
						
							| 86 | 
							
								84 85
							 | 
							elrpd | 
							⊢ ( ( 𝜑  ∧  0  <  - 𝑇 )  →  - 𝑇  ∈  ℝ+ )  | 
						
						
							| 87 | 
							
								3
							 | 
							fourierdlem2 | 
							⊢ ( 𝑀  ∈  ℕ  →  ( 𝑄  ∈  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) )  | 
						
						
							| 88 | 
							
								4 87
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝑄  ∈  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) )  | 
						
						
							| 89 | 
							
								6 88
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  | 
						
						
							| 90 | 
							
								89
							 | 
							simpld | 
							⊢ ( 𝜑  →  𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) ) )  | 
						
						
							| 91 | 
							
								
							 | 
							elmapi | 
							⊢ ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ )  | 
						
						
							| 92 | 
							
								90 91
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ )  | 
						
						
							| 93 | 
							
								92
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ )  | 
						
						
							| 94 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  𝑇  ∈  ℝ )  | 
						
						
							| 95 | 
							
								93 94
							 | 
							readdcld | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  ∈  ℝ )  | 
						
						
							| 96 | 
							
								95 8
							 | 
							fmptd | 
							⊢ ( 𝜑  →  𝑆 : ( 0 ... 𝑀 ) ⟶ ℝ )  | 
						
						
							| 97 | 
							
								
							 | 
							reex | 
							⊢ ℝ  ∈  V  | 
						
						
							| 98 | 
							
								97
							 | 
							a1i | 
							⊢ ( 𝜑  →  ℝ  ∈  V )  | 
						
						
							| 99 | 
							
								
							 | 
							ovex | 
							⊢ ( 0 ... 𝑀 )  ∈  V  | 
						
						
							| 100 | 
							
								99
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( 0 ... 𝑀 )  ∈  V )  | 
						
						
							| 101 | 
							
								98 100
							 | 
							elmapd | 
							⊢ ( 𝜑  →  ( 𝑆  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ↔  𝑆 : ( 0 ... 𝑀 ) ⟶ ℝ ) )  | 
						
						
							| 102 | 
							
								96 101
							 | 
							mpbird | 
							⊢ ( 𝜑  →  𝑆  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) ) )  | 
						
						
							| 103 | 
							
								8
							 | 
							a1i | 
							⊢ ( 𝜑  →  𝑆  =  ( 𝑖  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) ) )  | 
						
						
							| 104 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑖  =  0  →  ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ 0 ) )  | 
						
						
							| 105 | 
							
								104
							 | 
							oveq1d | 
							⊢ ( 𝑖  =  0  →  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  =  ( ( 𝑄 ‘ 0 )  +  𝑇 ) )  | 
						
						
							| 106 | 
							
								105
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑖  =  0 )  →  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  =  ( ( 𝑄 ‘ 0 )  +  𝑇 ) )  | 
						
						
							| 107 | 
							
								
							 | 
							0zd | 
							⊢ ( 𝜑  →  0  ∈  ℤ )  | 
						
						
							| 108 | 
							
								4
							 | 
							nnzd | 
							⊢ ( 𝜑  →  𝑀  ∈  ℤ )  | 
						
						
							| 109 | 
							
								
							 | 
							0le0 | 
							⊢ 0  ≤  0  | 
						
						
							| 110 | 
							
								109
							 | 
							a1i | 
							⊢ ( 𝜑  →  0  ≤  0 )  | 
						
						
							| 111 | 
							
								
							 | 
							nnnn0 | 
							⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℕ0 )  | 
						
						
							| 112 | 
							
								111
							 | 
							nn0ge0d | 
							⊢ ( 𝑀  ∈  ℕ  →  0  ≤  𝑀 )  | 
						
						
							| 113 | 
							
								4 112
							 | 
							syl | 
							⊢ ( 𝜑  →  0  ≤  𝑀 )  | 
						
						
							| 114 | 
							
								107 108 107 110 113
							 | 
							elfzd | 
							⊢ ( 𝜑  →  0  ∈  ( 0 ... 𝑀 ) )  | 
						
						
							| 115 | 
							
								92 114
							 | 
							ffvelcdmd | 
							⊢ ( 𝜑  →  ( 𝑄 ‘ 0 )  ∈  ℝ )  | 
						
						
							| 116 | 
							
								115 5
							 | 
							readdcld | 
							⊢ ( 𝜑  →  ( ( 𝑄 ‘ 0 )  +  𝑇 )  ∈  ℝ )  | 
						
						
							| 117 | 
							
								103 106 114 116
							 | 
							fvmptd | 
							⊢ ( 𝜑  →  ( 𝑆 ‘ 0 )  =  ( ( 𝑄 ‘ 0 )  +  𝑇 ) )  | 
						
						
							| 118 | 
							
								
							 | 
							simprll | 
							⊢ ( ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑄 ‘ 0 )  =  𝐴 )  | 
						
						
							| 119 | 
							
								89 118
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝑄 ‘ 0 )  =  𝐴 )  | 
						
						
							| 120 | 
							
								119
							 | 
							oveq1d | 
							⊢ ( 𝜑  →  ( ( 𝑄 ‘ 0 )  +  𝑇 )  =  ( 𝐴  +  𝑇 ) )  | 
						
						
							| 121 | 
							
								117 120
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( 𝑆 ‘ 0 )  =  ( 𝐴  +  𝑇 ) )  | 
						
						
							| 122 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑖  =  𝑀  →  ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ 𝑀 ) )  | 
						
						
							| 123 | 
							
								122
							 | 
							oveq1d | 
							⊢ ( 𝑖  =  𝑀  →  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  =  ( ( 𝑄 ‘ 𝑀 )  +  𝑇 ) )  | 
						
						
							| 124 | 
							
								123
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑖  =  𝑀 )  →  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  =  ( ( 𝑄 ‘ 𝑀 )  +  𝑇 ) )  | 
						
						
							| 125 | 
							
								4
							 | 
							nnnn0d | 
							⊢ ( 𝜑  →  𝑀  ∈  ℕ0 )  | 
						
						
							| 126 | 
							
								
							 | 
							nn0uz | 
							⊢ ℕ0  =  ( ℤ≥ ‘ 0 )  | 
						
						
							| 127 | 
							
								125 126
							 | 
							eleqtrdi | 
							⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 0 ) )  | 
						
						
							| 128 | 
							
								
							 | 
							eluzfz2 | 
							⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 0 )  →  𝑀  ∈  ( 0 ... 𝑀 ) )  | 
						
						
							| 129 | 
							
								127 128
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑀  ∈  ( 0 ... 𝑀 ) )  | 
						
						
							| 130 | 
							
								92 129
							 | 
							ffvelcdmd | 
							⊢ ( 𝜑  →  ( 𝑄 ‘ 𝑀 )  ∈  ℝ )  | 
						
						
							| 131 | 
							
								130 5
							 | 
							readdcld | 
							⊢ ( 𝜑  →  ( ( 𝑄 ‘ 𝑀 )  +  𝑇 )  ∈  ℝ )  | 
						
						
							| 132 | 
							
								103 124 129 131
							 | 
							fvmptd | 
							⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑀 )  =  ( ( 𝑄 ‘ 𝑀 )  +  𝑇 ) )  | 
						
						
							| 133 | 
							
								
							 | 
							simprlr | 
							⊢ ( ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  | 
						
						
							| 134 | 
							
								89 133
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  | 
						
						
							| 135 | 
							
								134
							 | 
							oveq1d | 
							⊢ ( 𝜑  →  ( ( 𝑄 ‘ 𝑀 )  +  𝑇 )  =  ( 𝐵  +  𝑇 ) )  | 
						
						
							| 136 | 
							
								132 135
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑀 )  =  ( 𝐵  +  𝑇 ) )  | 
						
						
							| 137 | 
							
								121 136
							 | 
							jca | 
							⊢ ( 𝜑  →  ( ( 𝑆 ‘ 0 )  =  ( 𝐴  +  𝑇 )  ∧  ( 𝑆 ‘ 𝑀 )  =  ( 𝐵  +  𝑇 ) ) )  | 
						
						
							| 138 | 
							
								92
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ )  | 
						
						
							| 139 | 
							
								
							 | 
							elfzofz | 
							⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  𝑖  ∈  ( 0 ... 𝑀 ) )  | 
						
						
							| 140 | 
							
								139
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑖  ∈  ( 0 ... 𝑀 ) )  | 
						
						
							| 141 | 
							
								138 140
							 | 
							ffvelcdmd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ )  | 
						
						
							| 142 | 
							
								
							 | 
							fzofzp1 | 
							⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 ) )  | 
						
						
							| 143 | 
							
								142
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 ) )  | 
						
						
							| 144 | 
							
								138 143
							 | 
							ffvelcdmd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℝ )  | 
						
						
							| 145 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑇  ∈  ℝ )  | 
						
						
							| 146 | 
							
								89
							 | 
							simprrd | 
							⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  | 
						
						
							| 147 | 
							
								146
							 | 
							r19.21bi | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  | 
						
						
							| 148 | 
							
								141 144 145 147
							 | 
							ltadd1dd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  <  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) )  | 
						
						
							| 149 | 
							
								141 145
							 | 
							readdcld | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  ∈  ℝ )  | 
						
						
							| 150 | 
							
								8
							 | 
							fvmpt2 | 
							⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  ∈  ℝ )  →  ( 𝑆 ‘ 𝑖 )  =  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) )  | 
						
						
							| 151 | 
							
								140 149 150
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑆 ‘ 𝑖 )  =  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) )  | 
						
						
							| 152 | 
							
								8 24
							 | 
							eqtr4i | 
							⊢ 𝑆  =  ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑗 )  +  𝑇 ) )  | 
						
						
							| 153 | 
							
								152
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑆  =  ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑗 )  +  𝑇 ) ) )  | 
						
						
							| 154 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑗  =  ( 𝑖  +  1 )  →  ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  | 
						
						
							| 155 | 
							
								154
							 | 
							oveq1d | 
							⊢ ( 𝑗  =  ( 𝑖  +  1 )  →  ( ( 𝑄 ‘ 𝑗 )  +  𝑇 )  =  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) )  | 
						
						
							| 156 | 
							
								155
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑗  =  ( 𝑖  +  1 ) )  →  ( ( 𝑄 ‘ 𝑗 )  +  𝑇 )  =  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) )  | 
						
						
							| 157 | 
							
								144 145
							 | 
							readdcld | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 )  ∈  ℝ )  | 
						
						
							| 158 | 
							
								153 156 143 157
							 | 
							fvmptd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑆 ‘ ( 𝑖  +  1 ) )  =  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) )  | 
						
						
							| 159 | 
							
								148 151 158
							 | 
							3brtr4d | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑆 ‘ 𝑖 )  <  ( 𝑆 ‘ ( 𝑖  +  1 ) ) )  | 
						
						
							| 160 | 
							
								159
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑆 ‘ 𝑖 )  <  ( 𝑆 ‘ ( 𝑖  +  1 ) ) )  | 
						
						
							| 161 | 
							
								102 137 160
							 | 
							jca32 | 
							⊢ ( 𝜑  →  ( 𝑆  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑆 ‘ 0 )  =  ( 𝐴  +  𝑇 )  ∧  ( 𝑆 ‘ 𝑀 )  =  ( 𝐵  +  𝑇 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑆 ‘ 𝑖 )  <  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) ) )  | 
						
						
							| 162 | 
							
								9
							 | 
							fourierdlem2 | 
							⊢ ( 𝑀  ∈  ℕ  →  ( 𝑆  ∈  ( 𝐻 ‘ 𝑀 )  ↔  ( 𝑆  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑆 ‘ 0 )  =  ( 𝐴  +  𝑇 )  ∧  ( 𝑆 ‘ 𝑀 )  =  ( 𝐵  +  𝑇 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑆 ‘ 𝑖 )  <  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) ) ) )  | 
						
						
							| 163 | 
							
								4 162
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝑆  ∈  ( 𝐻 ‘ 𝑀 )  ↔  ( 𝑆  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑆 ‘ 0 )  =  ( 𝐴  +  𝑇 )  ∧  ( 𝑆 ‘ 𝑀 )  =  ( 𝐵  +  𝑇 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑆 ‘ 𝑖 )  <  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) ) ) )  | 
						
						
							| 164 | 
							
								161 163
							 | 
							mpbird | 
							⊢ ( 𝜑  →  𝑆  ∈  ( 𝐻 ‘ 𝑀 ) )  | 
						
						
							| 165 | 
							
								9
							 | 
							fveq1i | 
							⊢ ( 𝐻 ‘ 𝑀 )  =  ( ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  +  𝑇 )  ∧  ( 𝑝 ‘ 𝑚 )  =  ( 𝐵  +  𝑇 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) ‘ 𝑀 )  | 
						
						
							| 166 | 
							
								164 165
							 | 
							eleqtrdi | 
							⊢ ( 𝜑  →  𝑆  ∈  ( ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  +  𝑇 )  ∧  ( 𝑝 ‘ 𝑚 )  =  ( 𝐵  +  𝑇 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) ‘ 𝑀 ) )  | 
						
						
							| 167 | 
							
								166
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  0  <  - 𝑇 )  →  𝑆  ∈  ( ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  +  𝑇 )  ∧  ( 𝑝 ‘ 𝑚 )  =  ( 𝐵  +  𝑇 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) ‘ 𝑀 ) )  | 
						
						
							| 168 | 
							
								62
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝐴  +  𝑇 )  ∈  ℝ )  | 
						
						
							| 169 | 
							
								68
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝐵  +  𝑇 )  ∈  ℝ )  | 
						
						
							| 170 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  | 
						
						
							| 171 | 
							
								
							 | 
							eliccre | 
							⊢ ( ( ( 𝐴  +  𝑇 )  ∈  ℝ  ∧  ( 𝐵  +  𝑇 )  ∈  ℝ  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝑥  ∈  ℝ )  | 
						
						
							| 172 | 
							
								168 169 170 171
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝑥  ∈  ℝ )  | 
						
						
							| 173 | 
							
								172
							 | 
							recnd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝑥  ∈  ℂ )  | 
						
						
							| 174 | 
							
								64
							 | 
							negcld | 
							⊢ ( 𝜑  →  - 𝑇  ∈  ℂ )  | 
						
						
							| 175 | 
							
								174
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  - 𝑇  ∈  ℂ )  | 
						
						
							| 176 | 
							
								173 175
							 | 
							addcld | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝑥  +  - 𝑇 )  ∈  ℂ )  | 
						
						
							| 177 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝜑 )  | 
						
						
							| 178 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝐴  ∈  ℝ )  | 
						
						
							| 179 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝐵  ∈  ℝ )  | 
						
						
							| 180 | 
							
								5
							 | 
							renegcld | 
							⊢ ( 𝜑  →  - 𝑇  ∈  ℝ )  | 
						
						
							| 181 | 
							
								180
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  - 𝑇  ∈  ℝ )  | 
						
						
							| 182 | 
							
								172 181
							 | 
							readdcld | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝑥  +  - 𝑇 )  ∈  ℝ )  | 
						
						
							| 183 | 
							
								65 66
							 | 
							eqtr2d | 
							⊢ ( 𝜑  →  𝐴  =  ( ( 𝐴  +  𝑇 )  +  - 𝑇 ) )  | 
						
						
							| 184 | 
							
								183
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝐴  =  ( ( 𝐴  +  𝑇 )  +  - 𝑇 ) )  | 
						
						
							| 185 | 
							
								168
							 | 
							rexrd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝐴  +  𝑇 )  ∈  ℝ* )  | 
						
						
							| 186 | 
							
								169
							 | 
							rexrd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝐵  +  𝑇 )  ∈  ℝ* )  | 
						
						
							| 187 | 
							
								
							 | 
							iccgelb | 
							⊢ ( ( ( 𝐴  +  𝑇 )  ∈  ℝ*  ∧  ( 𝐵  +  𝑇 )  ∈  ℝ*  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝐴  +  𝑇 )  ≤  𝑥 )  | 
						
						
							| 188 | 
							
								185 186 170 187
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝐴  +  𝑇 )  ≤  𝑥 )  | 
						
						
							| 189 | 
							
								168 172 181 188
							 | 
							leadd1dd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( ( 𝐴  +  𝑇 )  +  - 𝑇 )  ≤  ( 𝑥  +  - 𝑇 ) )  | 
						
						
							| 190 | 
							
								184 189
							 | 
							eqbrtrd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝐴  ≤  ( 𝑥  +  - 𝑇 ) )  | 
						
						
							| 191 | 
							
								
							 | 
							iccleub | 
							⊢ ( ( ( 𝐴  +  𝑇 )  ∈  ℝ*  ∧  ( 𝐵  +  𝑇 )  ∈  ℝ*  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝑥  ≤  ( 𝐵  +  𝑇 ) )  | 
						
						
							| 192 | 
							
								185 186 170 191
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝑥  ≤  ( 𝐵  +  𝑇 ) )  | 
						
						
							| 193 | 
							
								172 169 181 192
							 | 
							leadd1dd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝑥  +  - 𝑇 )  ≤  ( ( 𝐵  +  𝑇 )  +  - 𝑇 ) )  | 
						
						
							| 194 | 
							
								169
							 | 
							recnd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝐵  +  𝑇 )  ∈  ℂ )  | 
						
						
							| 195 | 
							
								64
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝑇  ∈  ℂ )  | 
						
						
							| 196 | 
							
								194 195
							 | 
							negsubd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( ( 𝐵  +  𝑇 )  +  - 𝑇 )  =  ( ( 𝐵  +  𝑇 )  −  𝑇 ) )  | 
						
						
							| 197 | 
							
								71
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( ( 𝐵  +  𝑇 )  −  𝑇 )  =  𝐵 )  | 
						
						
							| 198 | 
							
								196 197
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( ( 𝐵  +  𝑇 )  +  - 𝑇 )  =  𝐵 )  | 
						
						
							| 199 | 
							
								193 198
							 | 
							breqtrd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝑥  +  - 𝑇 )  ≤  𝐵 )  | 
						
						
							| 200 | 
							
								178 179 182 190 199
							 | 
							eliccd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝑥  +  - 𝑇 )  ∈  ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 201 | 
							
								177 200
							 | 
							jca | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝜑  ∧  ( 𝑥  +  - 𝑇 )  ∈  ( 𝐴 [,] 𝐵 ) ) )  | 
						
						
							| 202 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑦  =  ( 𝑥  +  - 𝑇 )  →  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝑥  +  - 𝑇 )  ∈  ( 𝐴 [,] 𝐵 ) ) )  | 
						
						
							| 203 | 
							
								202
							 | 
							anbi2d | 
							⊢ ( 𝑦  =  ( 𝑥  +  - 𝑇 )  →  ( ( 𝜑  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  ↔  ( 𝜑  ∧  ( 𝑥  +  - 𝑇 )  ∈  ( 𝐴 [,] 𝐵 ) ) ) )  | 
						
						
							| 204 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑦  =  ( 𝑥  +  - 𝑇 )  →  ( 𝑦  +  𝑇 )  =  ( ( 𝑥  +  - 𝑇 )  +  𝑇 ) )  | 
						
						
							| 205 | 
							
								204
							 | 
							fveq2d | 
							⊢ ( 𝑦  =  ( 𝑥  +  - 𝑇 )  →  ( 𝐹 ‘ ( 𝑦  +  𝑇 ) )  =  ( 𝐹 ‘ ( ( 𝑥  +  - 𝑇 )  +  𝑇 ) ) )  | 
						
						
							| 206 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑦  =  ( 𝑥  +  - 𝑇 )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑥  +  - 𝑇 ) ) )  | 
						
						
							| 207 | 
							
								205 206
							 | 
							eqeq12d | 
							⊢ ( 𝑦  =  ( 𝑥  +  - 𝑇 )  →  ( ( 𝐹 ‘ ( 𝑦  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑦 )  ↔  ( 𝐹 ‘ ( ( 𝑥  +  - 𝑇 )  +  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑥  +  - 𝑇 ) ) ) )  | 
						
						
							| 208 | 
							
								203 207
							 | 
							imbi12d | 
							⊢ ( 𝑦  =  ( 𝑥  +  - 𝑇 )  →  ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ ( 𝑦  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑦 ) )  ↔  ( ( 𝜑  ∧  ( 𝑥  +  - 𝑇 )  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ ( ( 𝑥  +  - 𝑇 )  +  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑥  +  - 𝑇 ) ) ) ) )  | 
						
						
							| 209 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↔  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  | 
						
						
							| 210 | 
							
								209
							 | 
							anbi2d | 
							⊢ ( 𝑥  =  𝑦  →  ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ↔  ( 𝜑  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) ) )  | 
						
						
							| 211 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝑥  +  𝑇 )  =  ( 𝑦  +  𝑇 ) )  | 
						
						
							| 212 | 
							
								211
							 | 
							fveq2d | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑦  +  𝑇 ) ) )  | 
						
						
							| 213 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  | 
						
						
							| 214 | 
							
								212 213
							 | 
							eqeq12d | 
							⊢ ( 𝑥  =  𝑦  →  ( ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝐹 ‘ ( 𝑦  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑦 ) ) )  | 
						
						
							| 215 | 
							
								210 214
							 | 
							imbi12d | 
							⊢ ( 𝑥  =  𝑦  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) )  ↔  ( ( 𝜑  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ ( 𝑦  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑦 ) ) ) )  | 
						
						
							| 216 | 
							
								215 7
							 | 
							chvarvv | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ ( 𝑦  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑦 ) )  | 
						
						
							| 217 | 
							
								208 216
							 | 
							vtoclg | 
							⊢ ( ( 𝑥  +  - 𝑇 )  ∈  ℂ  →  ( ( 𝜑  ∧  ( 𝑥  +  - 𝑇 )  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ ( ( 𝑥  +  - 𝑇 )  +  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑥  +  - 𝑇 ) ) ) )  | 
						
						
							| 218 | 
							
								176 201 217
							 | 
							sylc | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝐹 ‘ ( ( 𝑥  +  - 𝑇 )  +  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑥  +  - 𝑇 ) ) )  | 
						
						
							| 219 | 
							
								173 195
							 | 
							negsubd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝑥  +  - 𝑇 )  =  ( 𝑥  −  𝑇 ) )  | 
						
						
							| 220 | 
							
								219
							 | 
							oveq1d | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( ( 𝑥  +  - 𝑇 )  +  𝑇 )  =  ( ( 𝑥  −  𝑇 )  +  𝑇 ) )  | 
						
						
							| 221 | 
							
								173 195
							 | 
							npcand | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( ( 𝑥  −  𝑇 )  +  𝑇 )  =  𝑥 )  | 
						
						
							| 222 | 
							
								220 221
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( ( 𝑥  +  - 𝑇 )  +  𝑇 )  =  𝑥 )  | 
						
						
							| 223 | 
							
								222
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝐹 ‘ ( ( 𝑥  +  - 𝑇 )  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 224 | 
							
								218 223
							 | 
							eqtr3d | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝐹 ‘ ( 𝑥  +  - 𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 225 | 
							
								224
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  0  <  - 𝑇 )  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝐹 ‘ ( 𝑥  +  - 𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 226 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑗  =  𝑖  →  ( 𝑆 ‘ 𝑗 )  =  ( 𝑆 ‘ 𝑖 ) )  | 
						
						
							| 227 | 
							
								226
							 | 
							oveq1d | 
							⊢ ( 𝑗  =  𝑖  →  ( ( 𝑆 ‘ 𝑗 )  +  - 𝑇 )  =  ( ( 𝑆 ‘ 𝑖 )  +  - 𝑇 ) )  | 
						
						
							| 228 | 
							
								227
							 | 
							cbvmptv | 
							⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑆 ‘ 𝑗 )  +  - 𝑇 ) )  =  ( 𝑖  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑆 ‘ 𝑖 )  +  - 𝑇 ) )  | 
						
						
							| 229 | 
							
								10
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  0  <  - 𝑇 )  →  𝐹 : ℝ ⟶ ℂ )  | 
						
						
							| 230 | 
							
								10
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐹 : ℝ ⟶ ℂ )  | 
						
						
							| 231 | 
							
								
							 | 
							ioossre | 
							⊢ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℝ  | 
						
						
							| 232 | 
							
								231
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℝ )  | 
						
						
							| 233 | 
							
								230 232
							 | 
							feqresmpt | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) )  =  ( 𝑥  ∈  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ 𝑥 ) ) )  | 
						
						
							| 234 | 
							
								151 158
							 | 
							oveq12d | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) )  =  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  | 
						
						
							| 235 | 
							
								141 144 145
							 | 
							iooshift | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) )  =  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } )  | 
						
						
							| 236 | 
							
								234 235
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) )  =  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } )  | 
						
						
							| 237 | 
							
								236
							 | 
							mpteq1d | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑥  ∈  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ 𝑥 ) )  =  ( 𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) }  ↦  ( 𝐹 ‘ 𝑥 ) ) )  | 
						
						
							| 238 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } )  →  𝜑 )  | 
						
						
							| 239 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } )  →  𝑖  ∈  ( 0 ..^ 𝑀 ) )  | 
						
						
							| 240 | 
							
								235
							 | 
							eleq2d | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) )  ↔  𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } ) )  | 
						
						
							| 241 | 
							
								240
							 | 
							biimpar | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } )  →  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  | 
						
						
							| 242 | 
							
								141
							 | 
							rexrd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ* )  | 
						
						
							| 243 | 
							
								242
							 | 
							3adant3 | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ* )  | 
						
						
							| 244 | 
							
								144
							 | 
							rexrd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℝ* )  | 
						
						
							| 245 | 
							
								244
							 | 
							3adant3 | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℝ* )  | 
						
						
							| 246 | 
							
								
							 | 
							elioore | 
							⊢ ( 𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) )  →  𝑥  ∈  ℝ )  | 
						
						
							| 247 | 
							
								246
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  𝑥  ∈  ℝ )  | 
						
						
							| 248 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  𝑇  ∈  ℝ )  | 
						
						
							| 249 | 
							
								247 248
							 | 
							resubcld | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝑥  −  𝑇 )  ∈  ℝ )  | 
						
						
							| 250 | 
							
								249
							 | 
							3adant2 | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝑥  −  𝑇 )  ∈  ℝ )  | 
						
						
							| 251 | 
							
								141
							 | 
							recnd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℂ )  | 
						
						
							| 252 | 
							
								64
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑇  ∈  ℂ )  | 
						
						
							| 253 | 
							
								251 252
							 | 
							pncand | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  −  𝑇 )  =  ( 𝑄 ‘ 𝑖 ) )  | 
						
						
							| 254 | 
							
								253
							 | 
							eqcomd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  =  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  −  𝑇 ) )  | 
						
						
							| 255 | 
							
								254
							 | 
							3adant3 | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝑄 ‘ 𝑖 )  =  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  −  𝑇 ) )  | 
						
						
							| 256 | 
							
								149
							 | 
							3adant3 | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  ∈  ℝ )  | 
						
						
							| 257 | 
							
								247
							 | 
							3adant2 | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  𝑥  ∈  ℝ )  | 
						
						
							| 258 | 
							
								5
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  𝑇  ∈  ℝ )  | 
						
						
							| 259 | 
							
								149
							 | 
							rexrd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  ∈  ℝ* )  | 
						
						
							| 260 | 
							
								259
							 | 
							3adant3 | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  ∈  ℝ* )  | 
						
						
							| 261 | 
							
								157
							 | 
							rexrd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 )  ∈  ℝ* )  | 
						
						
							| 262 | 
							
								261
							 | 
							3adant3 | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 )  ∈  ℝ* )  | 
						
						
							| 263 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  | 
						
						
							| 264 | 
							
								
							 | 
							ioogtlb | 
							⊢ ( ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  ∈  ℝ*  ∧  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 )  ∈  ℝ*  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  <  𝑥 )  | 
						
						
							| 265 | 
							
								260 262 263 264
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  <  𝑥 )  | 
						
						
							| 266 | 
							
								256 257 258 265
							 | 
							ltsub1dd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  −  𝑇 )  <  ( 𝑥  −  𝑇 ) )  | 
						
						
							| 267 | 
							
								255 266
							 | 
							eqbrtrd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝑄 ‘ 𝑖 )  <  ( 𝑥  −  𝑇 ) )  | 
						
						
							| 268 | 
							
								157
							 | 
							3adant3 | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 )  ∈  ℝ )  | 
						
						
							| 269 | 
							
								
							 | 
							iooltub | 
							⊢ ( ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  ∈  ℝ*  ∧  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 )  ∈  ℝ*  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  𝑥  <  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) )  | 
						
						
							| 270 | 
							
								260 262 263 269
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  𝑥  <  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) )  | 
						
						
							| 271 | 
							
								257 268 258 270
							 | 
							ltsub1dd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝑥  −  𝑇 )  <  ( ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 )  −  𝑇 ) )  | 
						
						
							| 272 | 
							
								144
							 | 
							recnd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℂ )  | 
						
						
							| 273 | 
							
								272 252
							 | 
							pncand | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 )  −  𝑇 )  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  | 
						
						
							| 274 | 
							
								273
							 | 
							3adant3 | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 )  −  𝑇 )  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  | 
						
						
							| 275 | 
							
								271 274
							 | 
							breqtrd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝑥  −  𝑇 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  | 
						
						
							| 276 | 
							
								243 245 250 267 275
							 | 
							eliood | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝑥  −  𝑇 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  | 
						
						
							| 277 | 
							
								238 239 241 276
							 | 
							syl3anc | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } )  →  ( 𝑥  −  𝑇 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  | 
						
						
							| 278 | 
							
								
							 | 
							fvres | 
							⊢ ( ( 𝑥  −  𝑇 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝑥  −  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑥  −  𝑇 ) ) )  | 
						
						
							| 279 | 
							
								277 278
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝑥  −  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑥  −  𝑇 ) ) )  | 
						
						
							| 280 | 
							
								238 241 249
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } )  →  ( 𝑥  −  𝑇 )  ∈  ℝ )  | 
						
						
							| 281 | 
							
								1
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  𝐴  ∈  ℝ )  | 
						
						
							| 282 | 
							
								2
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  𝐵  ∈  ℝ )  | 
						
						
							| 283 | 
							
								66
							 | 
							eqcomd | 
							⊢ ( 𝜑  →  𝐴  =  ( ( 𝐴  +  𝑇 )  −  𝑇 ) )  | 
						
						
							| 284 | 
							
								283
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  𝐴  =  ( ( 𝐴  +  𝑇 )  −  𝑇 ) )  | 
						
						
							| 285 | 
							
								62
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝐴  +  𝑇 )  ∈  ℝ )  | 
						
						
							| 286 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐴  ∈  ℝ )  | 
						
						
							| 287 | 
							
								1
							 | 
							rexrd | 
							⊢ ( 𝜑  →  𝐴  ∈  ℝ* )  | 
						
						
							| 288 | 
							
								287
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐴  ∈  ℝ* )  | 
						
						
							| 289 | 
							
								2
							 | 
							rexrd | 
							⊢ ( 𝜑  →  𝐵  ∈  ℝ* )  | 
						
						
							| 290 | 
							
								289
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐵  ∈  ℝ* )  | 
						
						
							| 291 | 
							
								3 4 6
							 | 
							fourierdlem15 | 
							⊢ ( 𝜑  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 292 | 
							
								291
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 293 | 
							
								292 140
							 | 
							ffvelcdmd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 294 | 
							
								
							 | 
							iccgelb | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  ( 𝑄 ‘ 𝑖 )  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐴  ≤  ( 𝑄 ‘ 𝑖 ) )  | 
						
						
							| 295 | 
							
								288 290 293 294
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐴  ≤  ( 𝑄 ‘ 𝑖 ) )  | 
						
						
							| 296 | 
							
								286 141 145 295
							 | 
							leadd1dd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐴  +  𝑇 )  ≤  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) )  | 
						
						
							| 297 | 
							
								296
							 | 
							3adant3 | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝐴  +  𝑇 )  ≤  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) )  | 
						
						
							| 298 | 
							
								285 256 257 297 265
							 | 
							lelttrd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝐴  +  𝑇 )  <  𝑥 )  | 
						
						
							| 299 | 
							
								285 257 258 298
							 | 
							ltsub1dd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( ( 𝐴  +  𝑇 )  −  𝑇 )  <  ( 𝑥  −  𝑇 ) )  | 
						
						
							| 300 | 
							
								284 299
							 | 
							eqbrtrd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  𝐴  <  ( 𝑥  −  𝑇 ) )  | 
						
						
							| 301 | 
							
								281 250 300
							 | 
							ltled | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  𝐴  ≤  ( 𝑥  −  𝑇 ) )  | 
						
						
							| 302 | 
							
								144
							 | 
							3adant3 | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℝ )  | 
						
						
							| 303 | 
							
								292 143
							 | 
							ffvelcdmd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 304 | 
							
								
							 | 
							iccleub | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ≤  𝐵 )  | 
						
						
							| 305 | 
							
								288 290 303 304
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ≤  𝐵 )  | 
						
						
							| 306 | 
							
								305
							 | 
							3adant3 | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ≤  𝐵 )  | 
						
						
							| 307 | 
							
								250 302 282 275 306
							 | 
							ltletrd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝑥  −  𝑇 )  <  𝐵 )  | 
						
						
							| 308 | 
							
								250 282 307
							 | 
							ltled | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝑥  −  𝑇 )  ≤  𝐵 )  | 
						
						
							| 309 | 
							
								281 282 250 301 308
							 | 
							eliccd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝑥  −  𝑇 )  ∈  ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 310 | 
							
								238 239 241 309
							 | 
							syl3anc | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } )  →  ( 𝑥  −  𝑇 )  ∈  ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 311 | 
							
								238 310
							 | 
							jca | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } )  →  ( 𝜑  ∧  ( 𝑥  −  𝑇 )  ∈  ( 𝐴 [,] 𝐵 ) ) )  | 
						
						
							| 312 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑦  =  ( 𝑥  −  𝑇 )  →  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝑥  −  𝑇 )  ∈  ( 𝐴 [,] 𝐵 ) ) )  | 
						
						
							| 313 | 
							
								312
							 | 
							anbi2d | 
							⊢ ( 𝑦  =  ( 𝑥  −  𝑇 )  →  ( ( 𝜑  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  ↔  ( 𝜑  ∧  ( 𝑥  −  𝑇 )  ∈  ( 𝐴 [,] 𝐵 ) ) ) )  | 
						
						
							| 314 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑦  =  ( 𝑥  −  𝑇 )  →  ( 𝑦  +  𝑇 )  =  ( ( 𝑥  −  𝑇 )  +  𝑇 ) )  | 
						
						
							| 315 | 
							
								314
							 | 
							fveq2d | 
							⊢ ( 𝑦  =  ( 𝑥  −  𝑇 )  →  ( 𝐹 ‘ ( 𝑦  +  𝑇 ) )  =  ( 𝐹 ‘ ( ( 𝑥  −  𝑇 )  +  𝑇 ) ) )  | 
						
						
							| 316 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑦  =  ( 𝑥  −  𝑇 )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑥  −  𝑇 ) ) )  | 
						
						
							| 317 | 
							
								315 316
							 | 
							eqeq12d | 
							⊢ ( 𝑦  =  ( 𝑥  −  𝑇 )  →  ( ( 𝐹 ‘ ( 𝑦  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑦 )  ↔  ( 𝐹 ‘ ( ( 𝑥  −  𝑇 )  +  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑥  −  𝑇 ) ) ) )  | 
						
						
							| 318 | 
							
								313 317
							 | 
							imbi12d | 
							⊢ ( 𝑦  =  ( 𝑥  −  𝑇 )  →  ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ ( 𝑦  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑦 ) )  ↔  ( ( 𝜑  ∧  ( 𝑥  −  𝑇 )  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ ( ( 𝑥  −  𝑇 )  +  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑥  −  𝑇 ) ) ) ) )  | 
						
						
							| 319 | 
							
								318 216
							 | 
							vtoclg | 
							⊢ ( ( 𝑥  −  𝑇 )  ∈  ℝ  →  ( ( 𝜑  ∧  ( 𝑥  −  𝑇 )  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ ( ( 𝑥  −  𝑇 )  +  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑥  −  𝑇 ) ) ) )  | 
						
						
							| 320 | 
							
								280 311 319
							 | 
							sylc | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } )  →  ( 𝐹 ‘ ( ( 𝑥  −  𝑇 )  +  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑥  −  𝑇 ) ) )  | 
						
						
							| 321 | 
							
								241 246
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } )  →  𝑥  ∈  ℝ )  | 
						
						
							| 322 | 
							
								
							 | 
							recn | 
							⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ℂ )  | 
						
						
							| 323 | 
							
								322
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  𝑥  ∈  ℂ )  | 
						
						
							| 324 | 
							
								64
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  𝑇  ∈  ℂ )  | 
						
						
							| 325 | 
							
								323 324
							 | 
							npcand | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( 𝑥  −  𝑇 )  +  𝑇 )  =  𝑥 )  | 
						
						
							| 326 | 
							
								325
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( ( 𝑥  −  𝑇 )  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 327 | 
							
								238 321 326
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } )  →  ( 𝐹 ‘ ( ( 𝑥  −  𝑇 )  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 328 | 
							
								279 320 327
							 | 
							3eqtr2rd | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } )  →  ( 𝐹 ‘ 𝑥 )  =  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝑥  −  𝑇 ) ) )  | 
						
						
							| 329 | 
							
								328
							 | 
							mpteq2dva | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) }  ↦  ( 𝐹 ‘ 𝑥 ) )  =  ( 𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) }  ↦  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝑥  −  𝑇 ) ) ) )  | 
						
						
							| 330 | 
							
								233 237 329
							 | 
							3eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) )  =  ( 𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) }  ↦  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝑥  −  𝑇 ) ) ) )  | 
						
						
							| 331 | 
							
								
							 | 
							ioosscn | 
							⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℂ  | 
						
						
							| 332 | 
							
								331
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℂ )  | 
						
						
							| 333 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑤  =  𝑥  →  ( 𝑤  =  ( 𝑧  +  𝑇 )  ↔  𝑥  =  ( 𝑧  +  𝑇 ) ) )  | 
						
						
							| 334 | 
							
								333
							 | 
							rexbidv | 
							⊢ ( 𝑤  =  𝑥  →  ( ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 )  ↔  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑥  =  ( 𝑧  +  𝑇 ) ) )  | 
						
						
							| 335 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑧  =  𝑦  →  ( 𝑧  +  𝑇 )  =  ( 𝑦  +  𝑇 ) )  | 
						
						
							| 336 | 
							
								335
							 | 
							eqeq2d | 
							⊢ ( 𝑧  =  𝑦  →  ( 𝑥  =  ( 𝑧  +  𝑇 )  ↔  𝑥  =  ( 𝑦  +  𝑇 ) ) )  | 
						
						
							| 337 | 
							
								336
							 | 
							cbvrexvw | 
							⊢ ( ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑥  =  ( 𝑧  +  𝑇 )  ↔  ∃ 𝑦  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑥  =  ( 𝑦  +  𝑇 ) )  | 
						
						
							| 338 | 
							
								334 337
							 | 
							bitrdi | 
							⊢ ( 𝑤  =  𝑥  →  ( ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 )  ↔  ∃ 𝑦  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑥  =  ( 𝑦  +  𝑇 ) ) )  | 
						
						
							| 339 | 
							
								338
							 | 
							cbvrabv | 
							⊢ { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) }  =  { 𝑥  ∈  ℂ  ∣  ∃ 𝑦  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑥  =  ( 𝑦  +  𝑇 ) }  | 
						
						
							| 340 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) }  ↦  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝑥  −  𝑇 ) ) )  =  ( 𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) }  ↦  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝑥  −  𝑇 ) ) )  | 
						
						
							| 341 | 
							
								332 252 339 11 340
							 | 
							cncfshift | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) }  ↦  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝑥  −  𝑇 ) ) )  ∈  ( { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } –cn→ ℂ ) )  | 
						
						
							| 342 | 
							
								236
							 | 
							eqcomd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) }  =  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) )  | 
						
						
							| 343 | 
							
								342
							 | 
							oveq1d | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } –cn→ ℂ )  =  ( ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) )  | 
						
						
							| 344 | 
							
								341 343
							 | 
							eleqtrd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) }  ↦  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝑥  −  𝑇 ) ) )  ∈  ( ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) )  | 
						
						
							| 345 | 
							
								330 344
							 | 
							eqeltrd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) )  | 
						
						
							| 346 | 
							
								345
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  0  <  - 𝑇 )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) )  | 
						
						
							| 347 | 
							
								
							 | 
							ffdm | 
							⊢ ( 𝐹 : ℝ ⟶ ℂ  →  ( 𝐹 : dom  𝐹 ⟶ ℂ  ∧  dom  𝐹  ⊆  ℝ ) )  | 
						
						
							| 348 | 
							
								10 347
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐹 : dom  𝐹 ⟶ ℂ  ∧  dom  𝐹  ⊆  ℝ ) )  | 
						
						
							| 349 | 
							
								348
							 | 
							simpld | 
							⊢ ( 𝜑  →  𝐹 : dom  𝐹 ⟶ ℂ )  | 
						
						
							| 350 | 
							
								349
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐹 : dom  𝐹 ⟶ ℂ )  | 
						
						
							| 351 | 
							
								
							 | 
							ioossre | 
							⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℝ  | 
						
						
							| 352 | 
							
								
							 | 
							fdm | 
							⊢ ( 𝐹 : ℝ ⟶ ℂ  →  dom  𝐹  =  ℝ )  | 
						
						
							| 353 | 
							
								230 352
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  dom  𝐹  =  ℝ )  | 
						
						
							| 354 | 
							
								351 353
							 | 
							sseqtrrid | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  dom  𝐹 )  | 
						
						
							| 355 | 
							
								339
							 | 
							eqcomi | 
							⊢ { 𝑥  ∈  ℂ  ∣  ∃ 𝑦  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑥  =  ( 𝑦  +  𝑇 ) }  =  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) }  | 
						
						
							| 356 | 
							
								232 342 353
							 | 
							3sstr4d | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) }  ⊆  dom  𝐹 )  | 
						
						
							| 357 | 
							
								339 356
							 | 
							eqsstrrid | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  { 𝑥  ∈  ℂ  ∣  ∃ 𝑦  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑥  =  ( 𝑦  +  𝑇 ) }  ⊆  dom  𝐹 )  | 
						
						
							| 358 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝜑 )  | 
						
						
							| 359 | 
							
								358 287
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝐴  ∈  ℝ* )  | 
						
						
							| 360 | 
							
								358 289
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝐵  ∈  ℝ* )  | 
						
						
							| 361 | 
							
								358 291
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 362 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑖  ∈  ( 0 ..^ 𝑀 ) )  | 
						
						
							| 363 | 
							
								
							 | 
							ioossicc | 
							⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  | 
						
						
							| 364 | 
							
								363
							 | 
							sseli | 
							⊢ ( 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  | 
						
						
							| 365 | 
							
								364
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  | 
						
						
							| 366 | 
							
								359 360 361 362 365
							 | 
							fourierdlem1 | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑧  ∈  ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 367 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑥  =  𝑧  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↔  𝑧  ∈  ( 𝐴 [,] 𝐵 ) ) )  | 
						
						
							| 368 | 
							
								367
							 | 
							anbi2d | 
							⊢ ( 𝑥  =  𝑧  →  ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ↔  ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 ) ) ) )  | 
						
						
							| 369 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑥  =  𝑧  →  ( 𝑥  +  𝑇 )  =  ( 𝑧  +  𝑇 ) )  | 
						
						
							| 370 | 
							
								369
							 | 
							fveq2d | 
							⊢ ( 𝑥  =  𝑧  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑧  +  𝑇 ) ) )  | 
						
						
							| 371 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑥  =  𝑧  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑧 ) )  | 
						
						
							| 372 | 
							
								370 371
							 | 
							eqeq12d | 
							⊢ ( 𝑥  =  𝑧  →  ( ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝐹 ‘ ( 𝑧  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑧 ) ) )  | 
						
						
							| 373 | 
							
								368 372
							 | 
							imbi12d | 
							⊢ ( 𝑥  =  𝑧  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) )  ↔  ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ ( 𝑧  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑧 ) ) ) )  | 
						
						
							| 374 | 
							
								373 7
							 | 
							chvarvv | 
							⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ ( 𝑧  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑧 ) )  | 
						
						
							| 375 | 
							
								358 366 374
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝐹 ‘ ( 𝑧  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑧 ) )  | 
						
						
							| 376 | 
							
								350 332 354 252 355 357 375 12
							 | 
							limcperiod | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑅  ∈  ( ( 𝐹  ↾  { 𝑥  ∈  ℂ  ∣  ∃ 𝑦  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑥  =  ( 𝑦  +  𝑇 ) } )  limℂ  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) ) )  | 
						
						
							| 377 | 
							
								355 342
							 | 
							eqtrid | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  { 𝑥  ∈  ℂ  ∣  ∃ 𝑦  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑥  =  ( 𝑦  +  𝑇 ) }  =  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) )  | 
						
						
							| 378 | 
							
								377
							 | 
							reseq2d | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  { 𝑥  ∈  ℂ  ∣  ∃ 𝑦  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑥  =  ( 𝑦  +  𝑇 ) } )  =  ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) ) )  | 
						
						
							| 379 | 
							
								151
							 | 
							eqcomd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  =  ( 𝑆 ‘ 𝑖 ) )  | 
						
						
							| 380 | 
							
								378 379
							 | 
							oveq12d | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐹  ↾  { 𝑥  ∈  ℂ  ∣  ∃ 𝑦  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑥  =  ( 𝑦  +  𝑇 ) } )  limℂ  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) )  =  ( ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑆 ‘ 𝑖 ) ) )  | 
						
						
							| 381 | 
							
								376 380
							 | 
							eleqtrd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑅  ∈  ( ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑆 ‘ 𝑖 ) ) )  | 
						
						
							| 382 | 
							
								381
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  0  <  - 𝑇 )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑅  ∈  ( ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑆 ‘ 𝑖 ) ) )  | 
						
						
							| 383 | 
							
								350 332 354 252 355 357 375 13
							 | 
							limcperiod | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  { 𝑥  ∈  ℂ  ∣  ∃ 𝑦  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑥  =  ( 𝑦  +  𝑇 ) } )  limℂ  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  | 
						
						
							| 384 | 
							
								158
							 | 
							eqcomd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 )  =  ( 𝑆 ‘ ( 𝑖  +  1 ) ) )  | 
						
						
							| 385 | 
							
								378 384
							 | 
							oveq12d | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐹  ↾  { 𝑥  ∈  ℂ  ∣  ∃ 𝑦  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑥  =  ( 𝑦  +  𝑇 ) } )  limℂ  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) )  =  ( ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) )  | 
						
						
							| 386 | 
							
								383 385
							 | 
							eleqtrd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) )  | 
						
						
							| 387 | 
							
								386
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  0  <  - 𝑇 )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) )  | 
						
						
							| 388 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑦  =  𝑥  →  ( 𝑦  =  ( 𝑆 ‘ 𝑖 )  ↔  𝑥  =  ( 𝑆 ‘ 𝑖 ) ) )  | 
						
						
							| 389 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑦  =  𝑥  →  ( 𝑦  =  ( 𝑆 ‘ ( 𝑖  +  1 ) )  ↔  𝑥  =  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) )  | 
						
						
							| 390 | 
							
								389 31
							 | 
							ifbieq2d | 
							⊢ ( 𝑦  =  𝑥  →  if ( 𝑦  =  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( 𝐹 ‘ 𝑦 ) )  =  if ( 𝑥  =  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  | 
						
						
							| 391 | 
							
								388 390
							 | 
							ifbieq2d | 
							⊢ ( 𝑦  =  𝑥  →  if ( 𝑦  =  ( 𝑆 ‘ 𝑖 ) ,  𝑅 ,  if ( 𝑦  =  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( 𝐹 ‘ 𝑦 ) ) )  =  if ( 𝑥  =  ( 𝑆 ‘ 𝑖 ) ,  𝑅 ,  if ( 𝑥  =  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) ) )  | 
						
						
							| 392 | 
							
								391
							 | 
							cbvmptv | 
							⊢ ( 𝑦  ∈  ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖  +  1 ) ) )  ↦  if ( 𝑦  =  ( 𝑆 ‘ 𝑖 ) ,  𝑅 ,  if ( 𝑦  =  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( 𝐹 ‘ 𝑦 ) ) ) )  =  ( 𝑥  ∈  ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖  +  1 ) ) )  ↦  if ( 𝑥  =  ( 𝑆 ‘ 𝑖 ) ,  𝑅 ,  if ( 𝑥  =  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) ) )  | 
						
						
							| 393 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑥  ∈  ( ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑆 ‘ 𝑗 )  +  - 𝑇 ) ) ‘ 𝑖 ) [,] ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑆 ‘ 𝑗 )  +  - 𝑇 ) ) ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝑦  ∈  ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖  +  1 ) ) )  ↦  if ( 𝑦  =  ( 𝑆 ‘ 𝑖 ) ,  𝑅 ,  if ( 𝑦  =  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( 𝐹 ‘ 𝑦 ) ) ) ) ‘ ( 𝑥  −  - 𝑇 ) ) )  =  ( 𝑥  ∈  ( ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑆 ‘ 𝑗 )  +  - 𝑇 ) ) ‘ 𝑖 ) [,] ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑆 ‘ 𝑗 )  +  - 𝑇 ) ) ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝑦  ∈  ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖  +  1 ) ) )  ↦  if ( 𝑦  =  ( 𝑆 ‘ 𝑖 ) ,  𝑅 ,  if ( 𝑦  =  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( 𝐹 ‘ 𝑦 ) ) ) ) ‘ ( 𝑥  −  - 𝑇 ) ) )  | 
						
						
							| 394 | 
							
								79 81 82 83 86 167 225 228 229 346 382 387 392 393
							 | 
							fourierdlem81 | 
							⊢ ( ( 𝜑  ∧  0  <  - 𝑇 )  →  ∫ ( ( ( 𝐴  +  𝑇 )  +  - 𝑇 ) [,] ( ( 𝐵  +  𝑇 )  +  - 𝑇 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  | 
						
						
							| 395 | 
							
								76 394
							 | 
							eqtr2d | 
							⊢ ( ( 𝜑  ∧  0  <  - 𝑇 )  →  ∫ ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  | 
						
						
							| 396 | 
							
								51 61 395
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  ¬  0  <  𝑇 )  ∧  ¬  𝑇  =  0 )  →  ∫ ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  | 
						
						
							| 397 | 
							
								50 396
							 | 
							pm2.61dan | 
							⊢ ( ( 𝜑  ∧  ¬  0  <  𝑇 )  →  ∫ ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  | 
						
						
							| 398 | 
							
								36 397
							 | 
							pm2.61dan | 
							⊢ ( 𝜑  →  ∫ ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  |