Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem92.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
fourierdlem92.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
fourierdlem92.p |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
4 |
|
fourierdlem92.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
5 |
|
fourierdlem92.t |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
6 |
|
fourierdlem92.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
7 |
|
fourierdlem92.fper |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
8 |
|
fourierdlem92.s |
⊢ 𝑆 = ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ) |
9 |
|
fourierdlem92.h |
⊢ 𝐻 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 + 𝑇 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( 𝐵 + 𝑇 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
10 |
|
fourierdlem92.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℂ ) |
11 |
|
fourierdlem92.cncf |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
12 |
|
fourierdlem92.r |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
13 |
|
fourierdlem92.l |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
14 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑇 ) → 𝐴 ∈ ℝ ) |
15 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑇 ) → 𝐵 ∈ ℝ ) |
16 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑇 ) → 𝑀 ∈ ℕ ) |
17 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑇 ) → 𝑇 ∈ ℝ ) |
18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 < 𝑇 ) → 0 < 𝑇 ) |
19 |
17 18
|
elrpd |
⊢ ( ( 𝜑 ∧ 0 < 𝑇 ) → 𝑇 ∈ ℝ+ ) |
20 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑇 ) → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
21 |
7
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 0 < 𝑇 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
22 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ 𝑖 ) ) |
23 |
22
|
oveq1d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑄 ‘ 𝑗 ) + 𝑇 ) = ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ) |
24 |
23
|
cbvmptv |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑗 ) + 𝑇 ) ) = ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ) |
25 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑇 ) → 𝐹 : ℝ ⟶ ℂ ) |
26 |
11
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 0 < 𝑇 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
27 |
12
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 0 < 𝑇 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
28 |
13
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 0 < 𝑇 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
29 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 = ( 𝑄 ‘ 𝑖 ) ↔ 𝑥 = ( 𝑄 ‘ 𝑖 ) ) ) |
30 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ↔ 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
31 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
32 |
30 31
|
ifbieq2d |
⊢ ( 𝑦 = 𝑥 → if ( 𝑦 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑦 ) ) = if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) |
33 |
29 32
|
ifbieq2d |
⊢ ( 𝑦 = 𝑥 → if ( 𝑦 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑦 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑦 ) ) ) = if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
34 |
33
|
cbvmptv |
⊢ ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑦 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑦 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑦 ) ) ) ) = ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
35 |
|
eqid |
⊢ ( 𝑥 ∈ ( ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑗 ) + 𝑇 ) ) ‘ 𝑖 ) [,] ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑗 ) + 𝑇 ) ) ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑦 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑦 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑦 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) = ( 𝑥 ∈ ( ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑗 ) + 𝑇 ) ) ‘ 𝑖 ) [,] ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑗 ) + 𝑇 ) ) ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑦 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑦 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑦 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) |
36 |
14 15 3 16 19 20 21 24 25 26 27 28 34 35
|
fourierdlem81 |
⊢ ( ( 𝜑 ∧ 0 < 𝑇 ) → ∫ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
37 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑇 = 0 ) → 𝑇 = 0 ) |
38 |
37
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑇 = 0 ) → ( 𝐴 + 𝑇 ) = ( 𝐴 + 0 ) ) |
39 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 = 0 ) → 𝐴 ∈ ℂ ) |
41 |
40
|
addid1d |
⊢ ( ( 𝜑 ∧ 𝑇 = 0 ) → ( 𝐴 + 0 ) = 𝐴 ) |
42 |
38 41
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑇 = 0 ) → ( 𝐴 + 𝑇 ) = 𝐴 ) |
43 |
37
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑇 = 0 ) → ( 𝐵 + 𝑇 ) = ( 𝐵 + 0 ) ) |
44 |
2
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 = 0 ) → 𝐵 ∈ ℂ ) |
46 |
45
|
addid1d |
⊢ ( ( 𝜑 ∧ 𝑇 = 0 ) → ( 𝐵 + 0 ) = 𝐵 ) |
47 |
43 46
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑇 = 0 ) → ( 𝐵 + 𝑇 ) = 𝐵 ) |
48 |
42 47
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑇 = 0 ) → ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) = ( 𝐴 [,] 𝐵 ) ) |
49 |
48
|
itgeq1d |
⊢ ( ( 𝜑 ∧ 𝑇 = 0 ) → ∫ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
50 |
49
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < 𝑇 ) ∧ 𝑇 = 0 ) → ∫ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
51 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < 𝑇 ) ∧ ¬ 𝑇 = 0 ) → 𝜑 ) |
52 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < 𝑇 ) ∧ ¬ 𝑇 = 0 ) → ¬ 𝑇 = 0 ) |
53 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < 𝑇 ) ∧ ¬ 𝑇 = 0 ) → ¬ 0 < 𝑇 ) |
54 |
|
ioran |
⊢ ( ¬ ( 𝑇 = 0 ∨ 0 < 𝑇 ) ↔ ( ¬ 𝑇 = 0 ∧ ¬ 0 < 𝑇 ) ) |
55 |
52 53 54
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < 𝑇 ) ∧ ¬ 𝑇 = 0 ) → ¬ ( 𝑇 = 0 ∨ 0 < 𝑇 ) ) |
56 |
51 5
|
syl |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < 𝑇 ) ∧ ¬ 𝑇 = 0 ) → 𝑇 ∈ ℝ ) |
57 |
|
0red |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < 𝑇 ) ∧ ¬ 𝑇 = 0 ) → 0 ∈ ℝ ) |
58 |
56 57
|
lttrid |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < 𝑇 ) ∧ ¬ 𝑇 = 0 ) → ( 𝑇 < 0 ↔ ¬ ( 𝑇 = 0 ∨ 0 < 𝑇 ) ) ) |
59 |
55 58
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < 𝑇 ) ∧ ¬ 𝑇 = 0 ) → 𝑇 < 0 ) |
60 |
56
|
lt0neg1d |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < 𝑇 ) ∧ ¬ 𝑇 = 0 ) → ( 𝑇 < 0 ↔ 0 < - 𝑇 ) ) |
61 |
59 60
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < 𝑇 ) ∧ ¬ 𝑇 = 0 ) → 0 < - 𝑇 ) |
62 |
1 5
|
readdcld |
⊢ ( 𝜑 → ( 𝐴 + 𝑇 ) ∈ ℝ ) |
63 |
62
|
recnd |
⊢ ( 𝜑 → ( 𝐴 + 𝑇 ) ∈ ℂ ) |
64 |
5
|
recnd |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
65 |
63 64
|
negsubd |
⊢ ( 𝜑 → ( ( 𝐴 + 𝑇 ) + - 𝑇 ) = ( ( 𝐴 + 𝑇 ) − 𝑇 ) ) |
66 |
39 64
|
pncand |
⊢ ( 𝜑 → ( ( 𝐴 + 𝑇 ) − 𝑇 ) = 𝐴 ) |
67 |
65 66
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 + 𝑇 ) + - 𝑇 ) = 𝐴 ) |
68 |
2 5
|
readdcld |
⊢ ( 𝜑 → ( 𝐵 + 𝑇 ) ∈ ℝ ) |
69 |
68
|
recnd |
⊢ ( 𝜑 → ( 𝐵 + 𝑇 ) ∈ ℂ ) |
70 |
69 64
|
negsubd |
⊢ ( 𝜑 → ( ( 𝐵 + 𝑇 ) + - 𝑇 ) = ( ( 𝐵 + 𝑇 ) − 𝑇 ) ) |
71 |
44 64
|
pncand |
⊢ ( 𝜑 → ( ( 𝐵 + 𝑇 ) − 𝑇 ) = 𝐵 ) |
72 |
70 71
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐵 + 𝑇 ) + - 𝑇 ) = 𝐵 ) |
73 |
67 72
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝐴 + 𝑇 ) + - 𝑇 ) [,] ( ( 𝐵 + 𝑇 ) + - 𝑇 ) ) = ( 𝐴 [,] 𝐵 ) ) |
74 |
73
|
eqcomd |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) = ( ( ( 𝐴 + 𝑇 ) + - 𝑇 ) [,] ( ( 𝐵 + 𝑇 ) + - 𝑇 ) ) ) |
75 |
74
|
itgeq1d |
⊢ ( 𝜑 → ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( ( ( 𝐴 + 𝑇 ) + - 𝑇 ) [,] ( ( 𝐵 + 𝑇 ) + - 𝑇 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
76 |
75
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < - 𝑇 ) → ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( ( ( 𝐴 + 𝑇 ) + - 𝑇 ) [,] ( ( 𝐵 + 𝑇 ) + - 𝑇 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
77 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < - 𝑇 ) → 𝐴 ∈ ℝ ) |
78 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < - 𝑇 ) → 𝑇 ∈ ℝ ) |
79 |
77 78
|
readdcld |
⊢ ( ( 𝜑 ∧ 0 < - 𝑇 ) → ( 𝐴 + 𝑇 ) ∈ ℝ ) |
80 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < - 𝑇 ) → 𝐵 ∈ ℝ ) |
81 |
80 78
|
readdcld |
⊢ ( ( 𝜑 ∧ 0 < - 𝑇 ) → ( 𝐵 + 𝑇 ) ∈ ℝ ) |
82 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 + 𝑇 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( 𝐵 + 𝑇 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 + 𝑇 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( 𝐵 + 𝑇 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
83 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < - 𝑇 ) → 𝑀 ∈ ℕ ) |
84 |
78
|
renegcld |
⊢ ( ( 𝜑 ∧ 0 < - 𝑇 ) → - 𝑇 ∈ ℝ ) |
85 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 < - 𝑇 ) → 0 < - 𝑇 ) |
86 |
84 85
|
elrpd |
⊢ ( ( 𝜑 ∧ 0 < - 𝑇 ) → - 𝑇 ∈ ℝ+ ) |
87 |
3
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
88 |
4 87
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
89 |
6 88
|
mpbid |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
90 |
89
|
simpld |
⊢ ( 𝜑 → 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
91 |
|
elmapi |
⊢ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
92 |
90 91
|
syl |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
93 |
92
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
94 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝑇 ∈ ℝ ) |
95 |
93 94
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ∈ ℝ ) |
96 |
95 8
|
fmptd |
⊢ ( 𝜑 → 𝑆 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
97 |
|
reex |
⊢ ℝ ∈ V |
98 |
97
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
99 |
|
ovex |
⊢ ( 0 ... 𝑀 ) ∈ V |
100 |
99
|
a1i |
⊢ ( 𝜑 → ( 0 ... 𝑀 ) ∈ V ) |
101 |
98 100
|
elmapd |
⊢ ( 𝜑 → ( 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ↔ 𝑆 : ( 0 ... 𝑀 ) ⟶ ℝ ) ) |
102 |
96 101
|
mpbird |
⊢ ( 𝜑 → 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
103 |
8
|
a1i |
⊢ ( 𝜑 → 𝑆 = ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ) ) |
104 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 0 ) ) |
105 |
104
|
oveq1d |
⊢ ( 𝑖 = 0 → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) = ( ( 𝑄 ‘ 0 ) + 𝑇 ) ) |
106 |
105
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) = ( ( 𝑄 ‘ 0 ) + 𝑇 ) ) |
107 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
108 |
4
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
109 |
|
0le0 |
⊢ 0 ≤ 0 |
110 |
109
|
a1i |
⊢ ( 𝜑 → 0 ≤ 0 ) |
111 |
|
nnnn0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) |
112 |
111
|
nn0ge0d |
⊢ ( 𝑀 ∈ ℕ → 0 ≤ 𝑀 ) |
113 |
4 112
|
syl |
⊢ ( 𝜑 → 0 ≤ 𝑀 ) |
114 |
107 108 107 110 113
|
elfzd |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑀 ) ) |
115 |
92 114
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) ∈ ℝ ) |
116 |
115 5
|
readdcld |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 0 ) + 𝑇 ) ∈ ℝ ) |
117 |
103 106 114 116
|
fvmptd |
⊢ ( 𝜑 → ( 𝑆 ‘ 0 ) = ( ( 𝑄 ‘ 0 ) + 𝑇 ) ) |
118 |
|
simprll |
⊢ ( ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 0 ) = 𝐴 ) |
119 |
89 118
|
syl |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = 𝐴 ) |
120 |
119
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 0 ) + 𝑇 ) = ( 𝐴 + 𝑇 ) ) |
121 |
117 120
|
eqtrd |
⊢ ( 𝜑 → ( 𝑆 ‘ 0 ) = ( 𝐴 + 𝑇 ) ) |
122 |
|
fveq2 |
⊢ ( 𝑖 = 𝑀 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑀 ) ) |
123 |
122
|
oveq1d |
⊢ ( 𝑖 = 𝑀 → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) = ( ( 𝑄 ‘ 𝑀 ) + 𝑇 ) ) |
124 |
123
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 = 𝑀 ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) = ( ( 𝑄 ‘ 𝑀 ) + 𝑇 ) ) |
125 |
4
|
nnnn0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
126 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
127 |
125 126
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
128 |
|
eluzfz2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
129 |
127 128
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
130 |
92 129
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) ∈ ℝ ) |
131 |
130 5
|
readdcld |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑀 ) + 𝑇 ) ∈ ℝ ) |
132 |
103 124 129 131
|
fvmptd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑀 ) = ( ( 𝑄 ‘ 𝑀 ) + 𝑇 ) ) |
133 |
|
simprlr |
⊢ ( ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑀 ) = 𝐵 ) |
134 |
89 133
|
syl |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) = 𝐵 ) |
135 |
134
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑀 ) + 𝑇 ) = ( 𝐵 + 𝑇 ) ) |
136 |
132 135
|
eqtrd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑀 ) = ( 𝐵 + 𝑇 ) ) |
137 |
121 136
|
jca |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 0 ) = ( 𝐴 + 𝑇 ) ∧ ( 𝑆 ‘ 𝑀 ) = ( 𝐵 + 𝑇 ) ) ) |
138 |
92
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
139 |
|
elfzofz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
140 |
139
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
141 |
138 140
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
142 |
|
fzofzp1 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
143 |
142
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
144 |
138 143
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
145 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑇 ∈ ℝ ) |
146 |
89
|
simprrd |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
147 |
146
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
148 |
141 144 145 147
|
ltadd1dd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) < ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) |
149 |
141 145
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ∈ ℝ ) |
150 |
8
|
fvmpt2 |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ∈ ℝ ) → ( 𝑆 ‘ 𝑖 ) = ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ) |
151 |
140 149 150
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 ‘ 𝑖 ) = ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ) |
152 |
8 24
|
eqtr4i |
⊢ 𝑆 = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑗 ) + 𝑇 ) ) |
153 |
152
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑆 = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑗 ) + 𝑇 ) ) ) |
154 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝑖 + 1 ) → ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
155 |
154
|
oveq1d |
⊢ ( 𝑗 = ( 𝑖 + 1 ) → ( ( 𝑄 ‘ 𝑗 ) + 𝑇 ) = ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) |
156 |
155
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 = ( 𝑖 + 1 ) ) → ( ( 𝑄 ‘ 𝑗 ) + 𝑇 ) = ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) |
157 |
144 145
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ∈ ℝ ) |
158 |
153 156 143 157
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 ‘ ( 𝑖 + 1 ) ) = ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) |
159 |
148 151 158
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) |
160 |
159
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) |
161 |
102 137 160
|
jca32 |
⊢ ( 𝜑 → ( 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑆 ‘ 0 ) = ( 𝐴 + 𝑇 ) ∧ ( 𝑆 ‘ 𝑀 ) = ( 𝐵 + 𝑇 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ) |
162 |
9
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑆 ∈ ( 𝐻 ‘ 𝑀 ) ↔ ( 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑆 ‘ 0 ) = ( 𝐴 + 𝑇 ) ∧ ( 𝑆 ‘ 𝑀 ) = ( 𝐵 + 𝑇 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
163 |
4 162
|
syl |
⊢ ( 𝜑 → ( 𝑆 ∈ ( 𝐻 ‘ 𝑀 ) ↔ ( 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑆 ‘ 0 ) = ( 𝐴 + 𝑇 ) ∧ ( 𝑆 ‘ 𝑀 ) = ( 𝐵 + 𝑇 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
164 |
161 163
|
mpbird |
⊢ ( 𝜑 → 𝑆 ∈ ( 𝐻 ‘ 𝑀 ) ) |
165 |
9
|
fveq1i |
⊢ ( 𝐻 ‘ 𝑀 ) = ( ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 + 𝑇 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( 𝐵 + 𝑇 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) ‘ 𝑀 ) |
166 |
164 165
|
eleqtrdi |
⊢ ( 𝜑 → 𝑆 ∈ ( ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 + 𝑇 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( 𝐵 + 𝑇 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) ‘ 𝑀 ) ) |
167 |
166
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < - 𝑇 ) → 𝑆 ∈ ( ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 + 𝑇 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( 𝐵 + 𝑇 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) ‘ 𝑀 ) ) |
168 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐴 + 𝑇 ) ∈ ℝ ) |
169 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐵 + 𝑇 ) ∈ ℝ ) |
170 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) |
171 |
|
eliccre |
⊢ ( ( ( 𝐴 + 𝑇 ) ∈ ℝ ∧ ( 𝐵 + 𝑇 ) ∈ ℝ ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑥 ∈ ℝ ) |
172 |
168 169 170 171
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑥 ∈ ℝ ) |
173 |
172
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑥 ∈ ℂ ) |
174 |
64
|
negcld |
⊢ ( 𝜑 → - 𝑇 ∈ ℂ ) |
175 |
174
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → - 𝑇 ∈ ℂ ) |
176 |
173 175
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 + - 𝑇 ) ∈ ℂ ) |
177 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝜑 ) |
178 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝐴 ∈ ℝ ) |
179 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝐵 ∈ ℝ ) |
180 |
5
|
renegcld |
⊢ ( 𝜑 → - 𝑇 ∈ ℝ ) |
181 |
180
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → - 𝑇 ∈ ℝ ) |
182 |
172 181
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 + - 𝑇 ) ∈ ℝ ) |
183 |
65 66
|
eqtr2d |
⊢ ( 𝜑 → 𝐴 = ( ( 𝐴 + 𝑇 ) + - 𝑇 ) ) |
184 |
183
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝐴 = ( ( 𝐴 + 𝑇 ) + - 𝑇 ) ) |
185 |
168
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐴 + 𝑇 ) ∈ ℝ* ) |
186 |
169
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐵 + 𝑇 ) ∈ ℝ* ) |
187 |
|
iccgelb |
⊢ ( ( ( 𝐴 + 𝑇 ) ∈ ℝ* ∧ ( 𝐵 + 𝑇 ) ∈ ℝ* ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐴 + 𝑇 ) ≤ 𝑥 ) |
188 |
185 186 170 187
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐴 + 𝑇 ) ≤ 𝑥 ) |
189 |
168 172 181 188
|
leadd1dd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( ( 𝐴 + 𝑇 ) + - 𝑇 ) ≤ ( 𝑥 + - 𝑇 ) ) |
190 |
184 189
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝐴 ≤ ( 𝑥 + - 𝑇 ) ) |
191 |
|
iccleub |
⊢ ( ( ( 𝐴 + 𝑇 ) ∈ ℝ* ∧ ( 𝐵 + 𝑇 ) ∈ ℝ* ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑥 ≤ ( 𝐵 + 𝑇 ) ) |
192 |
185 186 170 191
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑥 ≤ ( 𝐵 + 𝑇 ) ) |
193 |
172 169 181 192
|
leadd1dd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 + - 𝑇 ) ≤ ( ( 𝐵 + 𝑇 ) + - 𝑇 ) ) |
194 |
169
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐵 + 𝑇 ) ∈ ℂ ) |
195 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑇 ∈ ℂ ) |
196 |
194 195
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( ( 𝐵 + 𝑇 ) + - 𝑇 ) = ( ( 𝐵 + 𝑇 ) − 𝑇 ) ) |
197 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( ( 𝐵 + 𝑇 ) − 𝑇 ) = 𝐵 ) |
198 |
196 197
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( ( 𝐵 + 𝑇 ) + - 𝑇 ) = 𝐵 ) |
199 |
193 198
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 + - 𝑇 ) ≤ 𝐵 ) |
200 |
178 179 182 190 199
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 + - 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
201 |
177 200
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝜑 ∧ ( 𝑥 + - 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) ) |
202 |
|
eleq1 |
⊢ ( 𝑦 = ( 𝑥 + - 𝑇 ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 + - 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) ) |
203 |
202
|
anbi2d |
⊢ ( 𝑦 = ( 𝑥 + - 𝑇 ) → ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ↔ ( 𝜑 ∧ ( 𝑥 + - 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) ) ) |
204 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑥 + - 𝑇 ) → ( 𝑦 + 𝑇 ) = ( ( 𝑥 + - 𝑇 ) + 𝑇 ) ) |
205 |
204
|
fveq2d |
⊢ ( 𝑦 = ( 𝑥 + - 𝑇 ) → ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ ( ( 𝑥 + - 𝑇 ) + 𝑇 ) ) ) |
206 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑥 + - 𝑇 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑥 + - 𝑇 ) ) ) |
207 |
205 206
|
eqeq12d |
⊢ ( 𝑦 = ( 𝑥 + - 𝑇 ) → ( ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ ( ( 𝑥 + - 𝑇 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑥 + - 𝑇 ) ) ) ) |
208 |
203 207
|
imbi12d |
⊢ ( 𝑦 = ( 𝑥 + - 𝑇 ) → ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝜑 ∧ ( 𝑥 + - 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( ( 𝑥 + - 𝑇 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑥 + - 𝑇 ) ) ) ) ) |
209 |
|
eleq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
210 |
209
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ↔ ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ) |
211 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 + 𝑇 ) = ( 𝑦 + 𝑇 ) ) |
212 |
211
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) ) |
213 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
214 |
212 213
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ) ) |
215 |
210 214
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ) ) ) |
216 |
215 7
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ) |
217 |
208 216
|
vtoclg |
⊢ ( ( 𝑥 + - 𝑇 ) ∈ ℂ → ( ( 𝜑 ∧ ( 𝑥 + - 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( ( 𝑥 + - 𝑇 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑥 + - 𝑇 ) ) ) ) |
218 |
176 201 217
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐹 ‘ ( ( 𝑥 + - 𝑇 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑥 + - 𝑇 ) ) ) |
219 |
173 195
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 + - 𝑇 ) = ( 𝑥 − 𝑇 ) ) |
220 |
219
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( ( 𝑥 + - 𝑇 ) + 𝑇 ) = ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) |
221 |
173 195
|
npcand |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( ( 𝑥 − 𝑇 ) + 𝑇 ) = 𝑥 ) |
222 |
220 221
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( ( 𝑥 + - 𝑇 ) + 𝑇 ) = 𝑥 ) |
223 |
222
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐹 ‘ ( ( 𝑥 + - 𝑇 ) + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
224 |
218 223
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐹 ‘ ( 𝑥 + - 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
225 |
224
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 0 < - 𝑇 ) ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐹 ‘ ( 𝑥 + - 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
226 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝑆 ‘ 𝑗 ) = ( 𝑆 ‘ 𝑖 ) ) |
227 |
226
|
oveq1d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑆 ‘ 𝑗 ) + - 𝑇 ) = ( ( 𝑆 ‘ 𝑖 ) + - 𝑇 ) ) |
228 |
227
|
cbvmptv |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑆 ‘ 𝑗 ) + - 𝑇 ) ) = ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑆 ‘ 𝑖 ) + - 𝑇 ) ) |
229 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < - 𝑇 ) → 𝐹 : ℝ ⟶ ℂ ) |
230 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐹 : ℝ ⟶ ℂ ) |
231 |
|
ioossre |
⊢ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ |
232 |
231
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
233 |
230 232
|
feqresmpt |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
234 |
151 158
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) = ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) |
235 |
141 144 145
|
iooshift |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) = { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) |
236 |
234 235
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) = { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) |
237 |
236
|
mpteq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
238 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) → 𝜑 ) |
239 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
240 |
235
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ↔ 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) ) |
241 |
240
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) → 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) |
242 |
141
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
243 |
242
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
244 |
144
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
245 |
244
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
246 |
|
elioore |
⊢ ( 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) → 𝑥 ∈ ℝ ) |
247 |
246
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → 𝑥 ∈ ℝ ) |
248 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → 𝑇 ∈ ℝ ) |
249 |
247 248
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) ∈ ℝ ) |
250 |
249
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) ∈ ℝ ) |
251 |
141
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℂ ) |
252 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑇 ∈ ℂ ) |
253 |
251 252
|
pncand |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) − 𝑇 ) = ( 𝑄 ‘ 𝑖 ) ) |
254 |
253
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) = ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) − 𝑇 ) ) |
255 |
254
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑄 ‘ 𝑖 ) = ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) − 𝑇 ) ) |
256 |
149
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ∈ ℝ ) |
257 |
247
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → 𝑥 ∈ ℝ ) |
258 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → 𝑇 ∈ ℝ ) |
259 |
149
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ∈ ℝ* ) |
260 |
259
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ∈ ℝ* ) |
261 |
157
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ∈ ℝ* ) |
262 |
261
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ∈ ℝ* ) |
263 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) |
264 |
|
ioogtlb |
⊢ ( ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ∈ ℝ* ∧ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ∈ ℝ* ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) < 𝑥 ) |
265 |
260 262 263 264
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) < 𝑥 ) |
266 |
256 257 258 265
|
ltsub1dd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) − 𝑇 ) < ( 𝑥 − 𝑇 ) ) |
267 |
255 266
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑥 − 𝑇 ) ) |
268 |
157
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ∈ ℝ ) |
269 |
|
iooltub |
⊢ ( ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ∈ ℝ* ∧ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ∈ ℝ* ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → 𝑥 < ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) |
270 |
260 262 263 269
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → 𝑥 < ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) |
271 |
257 268 258 270
|
ltsub1dd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) < ( ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) − 𝑇 ) ) |
272 |
144
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℂ ) |
273 |
272 252
|
pncand |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
274 |
273
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
275 |
271 274
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
276 |
243 245 250 267 275
|
eliood |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
277 |
238 239 241 276
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) → ( 𝑥 − 𝑇 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
278 |
|
fvres |
⊢ ( ( 𝑥 − 𝑇 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) = ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) |
279 |
277 278
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) = ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) |
280 |
238 241 249
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) → ( 𝑥 − 𝑇 ) ∈ ℝ ) |
281 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → 𝐴 ∈ ℝ ) |
282 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → 𝐵 ∈ ℝ ) |
283 |
66
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = ( ( 𝐴 + 𝑇 ) − 𝑇 ) ) |
284 |
283
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → 𝐴 = ( ( 𝐴 + 𝑇 ) − 𝑇 ) ) |
285 |
62
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝐴 + 𝑇 ) ∈ ℝ ) |
286 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐴 ∈ ℝ ) |
287 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
288 |
287
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐴 ∈ ℝ* ) |
289 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
290 |
289
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐵 ∈ ℝ* ) |
291 |
3 4 6
|
fourierdlem15 |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
292 |
291
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
293 |
292 140
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
294 |
|
iccgelb |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝑄 ‘ 𝑖 ) ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ ( 𝑄 ‘ 𝑖 ) ) |
295 |
288 290 293 294
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐴 ≤ ( 𝑄 ‘ 𝑖 ) ) |
296 |
286 141 145 295
|
leadd1dd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐴 + 𝑇 ) ≤ ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ) |
297 |
296
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝐴 + 𝑇 ) ≤ ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ) |
298 |
285 256 257 297 265
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝐴 + 𝑇 ) < 𝑥 ) |
299 |
285 257 258 298
|
ltsub1dd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( ( 𝐴 + 𝑇 ) − 𝑇 ) < ( 𝑥 − 𝑇 ) ) |
300 |
284 299
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → 𝐴 < ( 𝑥 − 𝑇 ) ) |
301 |
281 250 300
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → 𝐴 ≤ ( 𝑥 − 𝑇 ) ) |
302 |
144
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
303 |
292 143
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) |
304 |
|
iccleub |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ≤ 𝐵 ) |
305 |
288 290 303 304
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ≤ 𝐵 ) |
306 |
305
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ≤ 𝐵 ) |
307 |
250 302 282 275 306
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) < 𝐵 ) |
308 |
250 282 307
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) ≤ 𝐵 ) |
309 |
281 282 250 301 308
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
310 |
238 239 241 309
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) → ( 𝑥 − 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
311 |
238 310
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) → ( 𝜑 ∧ ( 𝑥 − 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) ) |
312 |
|
eleq1 |
⊢ ( 𝑦 = ( 𝑥 − 𝑇 ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 − 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) ) |
313 |
312
|
anbi2d |
⊢ ( 𝑦 = ( 𝑥 − 𝑇 ) → ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ↔ ( 𝜑 ∧ ( 𝑥 − 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) ) ) |
314 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑥 − 𝑇 ) → ( 𝑦 + 𝑇 ) = ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) |
315 |
314
|
fveq2d |
⊢ ( 𝑦 = ( 𝑥 − 𝑇 ) → ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) ) |
316 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑥 − 𝑇 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) |
317 |
315 316
|
eqeq12d |
⊢ ( 𝑦 = ( 𝑥 − 𝑇 ) → ( ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) ) |
318 |
313 317
|
imbi12d |
⊢ ( 𝑦 = ( 𝑥 − 𝑇 ) → ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝜑 ∧ ( 𝑥 − 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) ) ) |
319 |
318 216
|
vtoclg |
⊢ ( ( 𝑥 − 𝑇 ) ∈ ℝ → ( ( 𝜑 ∧ ( 𝑥 − 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) ) |
320 |
280 311 319
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) → ( 𝐹 ‘ ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) |
321 |
241 246
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) → 𝑥 ∈ ℝ ) |
322 |
|
recn |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) |
323 |
322
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℂ ) |
324 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑇 ∈ ℂ ) |
325 |
323 324
|
npcand |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 − 𝑇 ) + 𝑇 ) = 𝑥 ) |
326 |
325
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
327 |
238 321 326
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) → ( 𝐹 ‘ ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
328 |
279 320 327
|
3eqtr2rd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) → ( 𝐹 ‘ 𝑥 ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) |
329 |
328
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ↦ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) ) |
330 |
233 237 329
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ↦ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) ) |
331 |
|
ioosscn |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ |
332 |
331
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ ) |
333 |
|
eqeq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 = ( 𝑧 + 𝑇 ) ↔ 𝑥 = ( 𝑧 + 𝑇 ) ) ) |
334 |
333
|
rexbidv |
⊢ ( 𝑤 = 𝑥 → ( ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) ↔ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑧 + 𝑇 ) ) ) |
335 |
|
oveq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 + 𝑇 ) = ( 𝑦 + 𝑇 ) ) |
336 |
335
|
eqeq2d |
⊢ ( 𝑧 = 𝑦 → ( 𝑥 = ( 𝑧 + 𝑇 ) ↔ 𝑥 = ( 𝑦 + 𝑇 ) ) ) |
337 |
336
|
cbvrexvw |
⊢ ( ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑧 + 𝑇 ) ↔ ∃ 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑦 + 𝑇 ) ) |
338 |
334 337
|
bitrdi |
⊢ ( 𝑤 = 𝑥 → ( ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) ↔ ∃ 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑦 + 𝑇 ) ) ) |
339 |
338
|
cbvrabv |
⊢ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } = { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑦 + 𝑇 ) } |
340 |
|
eqid |
⊢ ( 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ↦ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) = ( 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ↦ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) |
341 |
332 252 339 11 340
|
cncfshift |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ↦ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) ∈ ( { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } –cn→ ℂ ) ) |
342 |
236
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } = ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) |
343 |
342
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } –cn→ ℂ ) = ( ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
344 |
341 343
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ↦ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) ∈ ( ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
345 |
330 344
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
346 |
345
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 0 < - 𝑇 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
347 |
|
ffdm |
⊢ ( 𝐹 : ℝ ⟶ ℂ → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℝ ) ) |
348 |
10 347
|
syl |
⊢ ( 𝜑 → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℝ ) ) |
349 |
348
|
simpld |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ℂ ) |
350 |
349
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
351 |
|
ioossre |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ |
352 |
|
fdm |
⊢ ( 𝐹 : ℝ ⟶ ℂ → dom 𝐹 = ℝ ) |
353 |
230 352
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → dom 𝐹 = ℝ ) |
354 |
351 353
|
sseqtrrid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom 𝐹 ) |
355 |
339
|
eqcomi |
⊢ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑦 + 𝑇 ) } = { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } |
356 |
232 342 353
|
3sstr4d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ⊆ dom 𝐹 ) |
357 |
339 356
|
eqsstrrid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑦 + 𝑇 ) } ⊆ dom 𝐹 ) |
358 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝜑 ) |
359 |
358 287
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝐴 ∈ ℝ* ) |
360 |
358 289
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝐵 ∈ ℝ* ) |
361 |
358 291
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
362 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
363 |
|
ioossicc |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
364 |
363
|
sseli |
⊢ ( 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
365 |
364
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
366 |
359 360 361 362 365
|
fourierdlem1 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) |
367 |
|
eleq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
368 |
367
|
anbi2d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ↔ ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) ) |
369 |
|
oveq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 + 𝑇 ) = ( 𝑧 + 𝑇 ) ) |
370 |
369
|
fveq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑧 + 𝑇 ) ) ) |
371 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) |
372 |
370 371
|
eqeq12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ ( 𝑧 + 𝑇 ) ) = ( 𝐹 ‘ 𝑧 ) ) ) |
373 |
368 372
|
imbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( 𝑧 + 𝑇 ) ) = ( 𝐹 ‘ 𝑧 ) ) ) ) |
374 |
373 7
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( 𝑧 + 𝑇 ) ) = ( 𝐹 ‘ 𝑧 ) ) |
375 |
358 366 374
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐹 ‘ ( 𝑧 + 𝑇 ) ) = ( 𝐹 ‘ 𝑧 ) ) |
376 |
350 332 354 252 355 357 375 12
|
limcperiod |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑦 + 𝑇 ) } ) limℂ ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ) ) |
377 |
355 342
|
syl5eq |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑦 + 𝑇 ) } = ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) |
378 |
377
|
reseq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑦 + 𝑇 ) } ) = ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ) |
379 |
151
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) = ( 𝑆 ‘ 𝑖 ) ) |
380 |
378 379
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑦 + 𝑇 ) } ) limℂ ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ) = ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑆 ‘ 𝑖 ) ) ) |
381 |
376 380
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑆 ‘ 𝑖 ) ) ) |
382 |
381
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 0 < - 𝑇 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑆 ‘ 𝑖 ) ) ) |
383 |
350 332 354 252 355 357 375 13
|
limcperiod |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑦 + 𝑇 ) } ) limℂ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) |
384 |
158
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) |
385 |
378 384
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑦 + 𝑇 ) } ) limℂ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) = ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) |
386 |
383 385
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) |
387 |
386
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 0 < - 𝑇 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) |
388 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 = ( 𝑆 ‘ 𝑖 ) ↔ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ) |
389 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ↔ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) |
390 |
389 31
|
ifbieq2d |
⊢ ( 𝑦 = 𝑥 → if ( 𝑦 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑦 ) ) = if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) |
391 |
388 390
|
ifbieq2d |
⊢ ( 𝑦 = 𝑥 → if ( 𝑦 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑦 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑦 ) ) ) = if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
392 |
391
|
cbvmptv |
⊢ ( 𝑦 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑦 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑦 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑦 ) ) ) ) = ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
393 |
|
eqid |
⊢ ( 𝑥 ∈ ( ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑆 ‘ 𝑗 ) + - 𝑇 ) ) ‘ 𝑖 ) [,] ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑆 ‘ 𝑗 ) + - 𝑇 ) ) ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝑦 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑦 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑦 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑦 ) ) ) ) ‘ ( 𝑥 − - 𝑇 ) ) ) = ( 𝑥 ∈ ( ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑆 ‘ 𝑗 ) + - 𝑇 ) ) ‘ 𝑖 ) [,] ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑆 ‘ 𝑗 ) + - 𝑇 ) ) ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝑦 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑦 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑦 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑦 ) ) ) ) ‘ ( 𝑥 − - 𝑇 ) ) ) |
394 |
79 81 82 83 86 167 225 228 229 346 382 387 392 393
|
fourierdlem81 |
⊢ ( ( 𝜑 ∧ 0 < - 𝑇 ) → ∫ ( ( ( 𝐴 + 𝑇 ) + - 𝑇 ) [,] ( ( 𝐵 + 𝑇 ) + - 𝑇 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
395 |
76 394
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 0 < - 𝑇 ) → ∫ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
396 |
51 61 395
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < 𝑇 ) ∧ ¬ 𝑇 = 0 ) → ∫ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
397 |
50 396
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ ¬ 0 < 𝑇 ) → ∫ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
398 |
36 397
|
pm2.61dan |
⊢ ( 𝜑 → ∫ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |