| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fourierdlem94.f | 
							⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℝ )  | 
						
						
							| 2 | 
							
								
							 | 
							fourierdlem94.t | 
							⊢ 𝑇  =  ( 2  ·  π )  | 
						
						
							| 3 | 
							
								
							 | 
							fourierdlem94.per | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							fourierdlem94.x | 
							⊢ ( 𝜑  →  𝑋  ∈  ℝ )  | 
						
						
							| 5 | 
							
								
							 | 
							fourierdlem94.p | 
							⊢ 𝑃  =  ( 𝑛  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑛 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  - π  ∧  ( 𝑝 ‘ 𝑛 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } )  | 
						
						
							| 6 | 
							
								
							 | 
							fourierdlem94.m | 
							⊢ ( 𝜑  →  𝑀  ∈  ℕ )  | 
						
						
							| 7 | 
							
								
							 | 
							fourierdlem94.q | 
							⊢ ( 𝜑  →  𝑄  ∈  ( 𝑃 ‘ 𝑀 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							fourierdlem94.dvcn | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) )  | 
						
						
							| 9 | 
							
								
							 | 
							fourierdlem94.dvlb | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) )  ≠  ∅ )  | 
						
						
							| 10 | 
							
								
							 | 
							fourierdlem94.dvub | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ≠  ∅ )  | 
						
						
							| 11 | 
							
								
							 | 
							pire | 
							⊢ π  ∈  ℝ  | 
						
						
							| 12 | 
							
								11
							 | 
							renegcli | 
							⊢ - π  ∈  ℝ  | 
						
						
							| 13 | 
							
								12
							 | 
							a1i | 
							⊢ ( 𝜑  →  - π  ∈  ℝ )  | 
						
						
							| 14 | 
							
								11
							 | 
							a1i | 
							⊢ ( 𝜑  →  π  ∈  ℝ )  | 
						
						
							| 15 | 
							
								
							 | 
							negpilt0 | 
							⊢ - π  <  0  | 
						
						
							| 16 | 
							
								
							 | 
							pipos | 
							⊢ 0  <  π  | 
						
						
							| 17 | 
							
								
							 | 
							0re | 
							⊢ 0  ∈  ℝ  | 
						
						
							| 18 | 
							
								12 17 11
							 | 
							lttri | 
							⊢ ( ( - π  <  0  ∧  0  <  π )  →  - π  <  π )  | 
						
						
							| 19 | 
							
								15 16 18
							 | 
							mp2an | 
							⊢ - π  <  π  | 
						
						
							| 20 | 
							
								19
							 | 
							a1i | 
							⊢ ( 𝜑  →  - π  <  π )  | 
						
						
							| 21 | 
							
								
							 | 
							picn | 
							⊢ π  ∈  ℂ  | 
						
						
							| 22 | 
							
								21
							 | 
							2timesi | 
							⊢ ( 2  ·  π )  =  ( π  +  π )  | 
						
						
							| 23 | 
							
								21 21
							 | 
							subnegi | 
							⊢ ( π  −  - π )  =  ( π  +  π )  | 
						
						
							| 24 | 
							
								22 2 23
							 | 
							3eqtr4i | 
							⊢ 𝑇  =  ( π  −  - π )  | 
						
						
							| 25 | 
							
								
							 | 
							ssid | 
							⊢ ℝ  ⊆  ℝ  | 
						
						
							| 26 | 
							
								25
							 | 
							a1i | 
							⊢ ( 𝜑  →  ℝ  ⊆  ℝ )  | 
						
						
							| 27 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ  ∧  𝑘  ∈  ℤ )  →  𝑥  ∈  ℝ )  | 
						
						
							| 28 | 
							
								
							 | 
							zre | 
							⊢ ( 𝑘  ∈  ℤ  →  𝑘  ∈  ℝ )  | 
						
						
							| 29 | 
							
								28
							 | 
							3ad2ant3 | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ  ∧  𝑘  ∈  ℤ )  →  𝑘  ∈  ℝ )  | 
						
						
							| 30 | 
							
								
							 | 
							2re | 
							⊢ 2  ∈  ℝ  | 
						
						
							| 31 | 
							
								30 11
							 | 
							remulcli | 
							⊢ ( 2  ·  π )  ∈  ℝ  | 
						
						
							| 32 | 
							
								31
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( 2  ·  π )  ∈  ℝ )  | 
						
						
							| 33 | 
							
								2 32
							 | 
							eqeltrid | 
							⊢ ( 𝜑  →  𝑇  ∈  ℝ )  | 
						
						
							| 34 | 
							
								33
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  𝑇  ∈  ℝ )  | 
						
						
							| 35 | 
							
								34
							 | 
							3adant2 | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ  ∧  𝑘  ∈  ℤ )  →  𝑇  ∈  ℝ )  | 
						
						
							| 36 | 
							
								29 35
							 | 
							remulcld | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ  ∧  𝑘  ∈  ℤ )  →  ( 𝑘  ·  𝑇 )  ∈  ℝ )  | 
						
						
							| 37 | 
							
								27 36
							 | 
							readdcld | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ  ∧  𝑘  ∈  ℤ )  →  ( 𝑥  +  ( 𝑘  ·  𝑇 ) )  ∈  ℝ )  | 
						
						
							| 38 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ  ∧  𝑘  ∈  ℤ )  →  𝜑 )  | 
						
						
							| 39 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ  ∧  𝑘  ∈  ℤ )  →  𝑘  ∈  ℤ )  | 
						
						
							| 40 | 
							
								
							 | 
							ax-resscn | 
							⊢ ℝ  ⊆  ℂ  | 
						
						
							| 41 | 
							
								40
							 | 
							a1i | 
							⊢ ( 𝜑  →  ℝ  ⊆  ℂ )  | 
						
						
							| 42 | 
							
								1 41
							 | 
							fssd | 
							⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℂ )  | 
						
						
							| 43 | 
							
								42
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  𝐹 : ℝ ⟶ ℂ )  | 
						
						
							| 44 | 
							
								43
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑥  ∈  ℝ )  →  𝐹 : ℝ ⟶ ℂ )  | 
						
						
							| 45 | 
							
								34
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑥  ∈  ℝ )  →  𝑇  ∈  ℝ )  | 
						
						
							| 46 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑥  ∈  ℝ )  →  𝑘  ∈  ℤ )  | 
						
						
							| 47 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑥  ∈  ℝ )  →  𝑥  ∈  ℝ )  | 
						
						
							| 48 | 
							
								
							 | 
							eleq1w | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  ℝ  ↔  𝑦  ∈  ℝ ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							anbi2d | 
							⊢ ( 𝑥  =  𝑦  →  ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ↔  ( 𝜑  ∧  𝑦  ∈  ℝ ) ) )  | 
						
						
							| 50 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝑥  +  𝑇 )  =  ( 𝑦  +  𝑇 ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							fveq2d | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑦  +  𝑇 ) ) )  | 
						
						
							| 52 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  | 
						
						
							| 53 | 
							
								51 52
							 | 
							eqeq12d | 
							⊢ ( 𝑥  =  𝑦  →  ( ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝐹 ‘ ( 𝑦  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑦 ) ) )  | 
						
						
							| 54 | 
							
								49 53
							 | 
							imbi12d | 
							⊢ ( 𝑥  =  𝑦  →  ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) )  ↔  ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑦  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑦 ) ) ) )  | 
						
						
							| 55 | 
							
								54 3
							 | 
							chvarvv | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑦  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑦 ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							ad4ant14 | 
							⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑥  ∈  ℝ )  ∧  𝑦  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑦  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑦 ) )  | 
						
						
							| 57 | 
							
								44 45 46 47 56
							 | 
							fperiodmul | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  ( 𝑘  ·  𝑇 ) ) )  =  ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 58 | 
							
								38 39 27 57
							 | 
							syl21anc | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ  ∧  𝑘  ∈  ℤ )  →  ( 𝐹 ‘ ( 𝑥  +  ( 𝑘  ·  𝑇 ) ) )  =  ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 59 | 
							
								40
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ℝ  ⊆  ℂ )  | 
						
						
							| 60 | 
							
								
							 | 
							ioossre | 
							⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℝ  | 
						
						
							| 61 | 
							
								60
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℝ )  | 
						
						
							| 62 | 
							
								1 61
							 | 
							fssresd | 
							⊢ ( 𝜑  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℝ )  | 
						
						
							| 63 | 
							
								62 41
							 | 
							fssd | 
							⊢ ( 𝜑  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ )  | 
						
						
							| 64 | 
							
								63
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ )  | 
						
						
							| 65 | 
							
								60
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℝ )  | 
						
						
							| 66 | 
							
								42
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐹 : ℝ ⟶ ℂ )  | 
						
						
							| 67 | 
							
								25
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ℝ  ⊆  ℝ )  | 
						
						
							| 68 | 
							
								
							 | 
							eqid | 
							⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld )  | 
						
						
							| 69 | 
							
								
							 | 
							tgioo4 | 
							⊢ ( topGen ‘ ran  (,) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ )  | 
						
						
							| 70 | 
							
								68 69
							 | 
							dvres | 
							⊢ ( ( ( ℝ  ⊆  ℂ  ∧  𝐹 : ℝ ⟶ ℂ )  ∧  ( ℝ  ⊆  ℝ  ∧  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℝ ) )  →  ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  =  ( ( ℝ  D  𝐹 )  ↾  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) )  | 
						
						
							| 71 | 
							
								59 66 67 65 70
							 | 
							syl22anc | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  =  ( ( ℝ  D  𝐹 )  ↾  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							dmeqd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  dom  ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  =  dom  ( ( ℝ  D  𝐹 )  ↾  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) )  | 
						
						
							| 73 | 
							
								
							 | 
							ioontr | 
							⊢ ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  | 
						
						
							| 74 | 
							
								73
							 | 
							reseq2i | 
							⊢ ( ( ℝ  D  𝐹 )  ↾  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  =  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							dmeqi | 
							⊢ dom  ( ( ℝ  D  𝐹 )  ↾  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  =  dom  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  | 
						
						
							| 76 | 
							
								75
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  dom  ( ( ℝ  D  𝐹 )  ↾  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  =  dom  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  | 
						
						
							| 77 | 
							
								
							 | 
							cncff | 
							⊢ ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ )  →  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ )  | 
						
						
							| 78 | 
							
								
							 | 
							fdm | 
							⊢ ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ  →  dom  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  | 
						
						
							| 79 | 
							
								8 77 78
							 | 
							3syl | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  dom  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  | 
						
						
							| 80 | 
							
								72 76 79
							 | 
							3eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  dom  ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  =  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  | 
						
						
							| 81 | 
							
								
							 | 
							dvcn | 
							⊢ ( ( ( ℝ  ⊆  ℂ  ∧  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ  ∧  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℝ )  ∧  dom  ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  =  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) )  | 
						
						
							| 82 | 
							
								59 64 65 80 81
							 | 
							syl31anc | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) )  | 
						
						
							| 83 | 
							
								65 40
							 | 
							sstrdi | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℂ )  | 
						
						
							| 84 | 
							
								5
							 | 
							fourierdlem2 | 
							⊢ ( 𝑀  ∈  ℕ  →  ( 𝑄  ∈  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  - π  ∧  ( 𝑄 ‘ 𝑀 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) )  | 
						
						
							| 85 | 
							
								6 84
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝑄  ∈  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  - π  ∧  ( 𝑄 ‘ 𝑀 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) )  | 
						
						
							| 86 | 
							
								7 85
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  - π  ∧  ( 𝑄 ‘ 𝑀 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  | 
						
						
							| 87 | 
							
								86
							 | 
							simpld | 
							⊢ ( 𝜑  →  𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) ) )  | 
						
						
							| 88 | 
							
								
							 | 
							elmapi | 
							⊢ ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ )  | 
						
						
							| 89 | 
							
								87 88
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ )  | 
						
						
							| 90 | 
							
								89
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ )  | 
						
						
							| 91 | 
							
								
							 | 
							elfzofz | 
							⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  𝑖  ∈  ( 0 ... 𝑀 ) )  | 
						
						
							| 92 | 
							
								91
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑖  ∈  ( 0 ... 𝑀 ) )  | 
						
						
							| 93 | 
							
								90 92
							 | 
							ffvelcdmd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ )  | 
						
						
							| 94 | 
							
								93
							 | 
							rexrd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ* )  | 
						
						
							| 95 | 
							
								
							 | 
							fzofzp1 | 
							⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 ) )  | 
						
						
							| 96 | 
							
								95
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 ) )  | 
						
						
							| 97 | 
							
								90 96
							 | 
							ffvelcdmd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℝ )  | 
						
						
							| 98 | 
							
								86
							 | 
							simprrd | 
							⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  | 
						
						
							| 99 | 
							
								98
							 | 
							r19.21bi | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  | 
						
						
							| 100 | 
							
								68 94 97 99
							 | 
							lptioo2cn | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  | 
						
						
							| 101 | 
							
								62
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℝ )  | 
						
						
							| 102 | 
							
								41 42 26
							 | 
							dvbss | 
							⊢ ( 𝜑  →  dom  ( ℝ  D  𝐹 )  ⊆  ℝ )  | 
						
						
							| 103 | 
							
								
							 | 
							dvfre | 
							⊢ ( ( 𝐹 : ℝ ⟶ ℝ  ∧  ℝ  ⊆  ℝ )  →  ( ℝ  D  𝐹 ) : dom  ( ℝ  D  𝐹 ) ⟶ ℝ )  | 
						
						
							| 104 | 
							
								1 26 103
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ℝ  D  𝐹 ) : dom  ( ℝ  D  𝐹 ) ⟶ ℝ )  | 
						
						
							| 105 | 
							
								86
							 | 
							simprd | 
							⊢ ( 𝜑  →  ( ( ( 𝑄 ‘ 0 )  =  - π  ∧  ( 𝑄 ‘ 𝑀 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  | 
						
						
							| 106 | 
							
								105
							 | 
							simplld | 
							⊢ ( 𝜑  →  ( 𝑄 ‘ 0 )  =  - π )  | 
						
						
							| 107 | 
							
								105
							 | 
							simplrd | 
							⊢ ( 𝜑  →  ( 𝑄 ‘ 𝑀 )  =  π )  | 
						
						
							| 108 | 
							
								8 77
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ )  | 
						
						
							| 109 | 
							
								97
							 | 
							rexrd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℝ* )  | 
						
						
							| 110 | 
							
								68 109 93 99
							 | 
							lptioo1cn | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  | 
						
						
							| 111 | 
							
								108 83 110 9 68
							 | 
							ellimciota | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ℩ 𝑥 𝑥  ∈  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) )  ∈  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) )  | 
						
						
							| 112 | 
							
								108 83 100 10 68
							 | 
							ellimciota | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ℩ 𝑥 𝑥  ∈  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  | 
						
						
							| 113 | 
							
								28
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  𝑘  ∈  ℝ )  | 
						
						
							| 114 | 
							
								113 34
							 | 
							remulcld | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  ( 𝑘  ·  𝑇 )  ∈  ℝ )  | 
						
						
							| 115 | 
							
								43
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑡  ∈  ℝ )  →  𝐹 : ℝ ⟶ ℂ )  | 
						
						
							| 116 | 
							
								34
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑡  ∈  ℝ )  →  𝑇  ∈  ℝ )  | 
						
						
							| 117 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑡  ∈  ℝ )  →  𝑘  ∈  ℤ )  | 
						
						
							| 118 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑡  ∈  ℝ )  →  𝑡  ∈  ℝ )  | 
						
						
							| 119 | 
							
								3
							 | 
							ad4ant14 | 
							⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑡  ∈  ℝ )  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 120 | 
							
								115 116 117 118 119
							 | 
							fperiodmul | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑡  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑡  +  ( 𝑘  ·  𝑇 ) ) )  =  ( 𝐹 ‘ 𝑡 ) )  | 
						
						
							| 121 | 
							
								
							 | 
							eqid | 
							⊢ ( ℝ  D  𝐹 )  =  ( ℝ  D  𝐹 )  | 
						
						
							| 122 | 
							
								43 114 120 121
							 | 
							fperdvper | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑡  ∈  dom  ( ℝ  D  𝐹 ) )  →  ( ( 𝑡  +  ( 𝑘  ·  𝑇 ) )  ∈  dom  ( ℝ  D  𝐹 )  ∧  ( ( ℝ  D  𝐹 ) ‘ ( 𝑡  +  ( 𝑘  ·  𝑇 ) ) )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) ) )  | 
						
						
							| 123 | 
							
								122
							 | 
							an32s | 
							⊢ ( ( ( 𝜑  ∧  𝑡  ∈  dom  ( ℝ  D  𝐹 ) )  ∧  𝑘  ∈  ℤ )  →  ( ( 𝑡  +  ( 𝑘  ·  𝑇 ) )  ∈  dom  ( ℝ  D  𝐹 )  ∧  ( ( ℝ  D  𝐹 ) ‘ ( 𝑡  +  ( 𝑘  ·  𝑇 ) ) )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) ) )  | 
						
						
							| 124 | 
							
								123
							 | 
							simpld | 
							⊢ ( ( ( 𝜑  ∧  𝑡  ∈  dom  ( ℝ  D  𝐹 ) )  ∧  𝑘  ∈  ℤ )  →  ( 𝑡  +  ( 𝑘  ·  𝑇 ) )  ∈  dom  ( ℝ  D  𝐹 ) )  | 
						
						
							| 125 | 
							
								123
							 | 
							simprd | 
							⊢ ( ( ( 𝜑  ∧  𝑡  ∈  dom  ( ℝ  D  𝐹 ) )  ∧  𝑘  ∈  ℤ )  →  ( ( ℝ  D  𝐹 ) ‘ ( 𝑡  +  ( 𝑘  ·  𝑇 ) ) )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  | 
						
						
							| 126 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑗  =  𝑖  →  ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ 𝑖 ) )  | 
						
						
							| 127 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑗  =  𝑖  →  ( 𝑗  +  1 )  =  ( 𝑖  +  1 ) )  | 
						
						
							| 128 | 
							
								127
							 | 
							fveq2d | 
							⊢ ( 𝑗  =  𝑖  →  ( 𝑄 ‘ ( 𝑗  +  1 ) )  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  | 
						
						
							| 129 | 
							
								126 128
							 | 
							oveq12d | 
							⊢ ( 𝑗  =  𝑖  →  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) )  =  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  | 
						
						
							| 130 | 
							
								129
							 | 
							cbvmptv | 
							⊢ ( 𝑗  ∈  ( 0 ..^ 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) )  =  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  | 
						
						
							| 131 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑡  ∈  ℝ  ↦  ( 𝑡  +  ( ( ⌊ ‘ ( ( π  −  𝑡 )  /  𝑇 ) )  ·  𝑇 ) ) )  =  ( 𝑡  ∈  ℝ  ↦  ( 𝑡  +  ( ( ⌊ ‘ ( ( π  −  𝑡 )  /  𝑇 ) )  ·  𝑇 ) ) )  | 
						
						
							| 132 | 
							
								102 104 13 14 20 24 6 89 106 107 8 111 112 124 125 130 131
							 | 
							fourierdlem71 | 
							⊢ ( 𝜑  →  ∃ 𝑧  ∈  ℝ ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  | 
						
						
							| 133 | 
							
								132
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  | 
						
						
							| 134 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑡 ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  | 
						
						
							| 135 | 
							
								
							 | 
							nfra1 | 
							⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧  | 
						
						
							| 136 | 
							
								134 135
							 | 
							nfan | 
							⊢ Ⅎ 𝑡 ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  | 
						
						
							| 137 | 
							
								71 74
							 | 
							eqtrdi | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  =  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  | 
						
						
							| 138 | 
							
								137
							 | 
							fveq1d | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ‘ 𝑡 )  =  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 ) )  | 
						
						
							| 139 | 
							
								
							 | 
							fvres | 
							⊢ ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  | 
						
						
							| 140 | 
							
								138 139
							 | 
							sylan9eq | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ‘ 𝑡 )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  | 
						
						
							| 141 | 
							
								140
							 | 
							fveq2d | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( abs ‘ ( ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ‘ 𝑡 ) )  =  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) ) )  | 
						
						
							| 142 | 
							
								141
							 | 
							adantlr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( abs ‘ ( ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ‘ 𝑡 ) )  =  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) ) )  | 
						
						
							| 143 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  | 
						
						
							| 144 | 
							
								
							 | 
							ssdmres | 
							⊢ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  dom  ( ℝ  D  𝐹 )  ↔  dom  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  | 
						
						
							| 145 | 
							
								79 144
							 | 
							sylibr | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  dom  ( ℝ  D  𝐹 ) )  | 
						
						
							| 146 | 
							
								145
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  dom  ( ℝ  D  𝐹 ) )  | 
						
						
							| 147 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  | 
						
						
							| 148 | 
							
								146 147
							 | 
							sseldd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑡  ∈  dom  ( ℝ  D  𝐹 ) )  | 
						
						
							| 149 | 
							
								
							 | 
							rspa | 
							⊢ ( ( ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧  ∧  𝑡  ∈  dom  ( ℝ  D  𝐹 ) )  →  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  | 
						
						
							| 150 | 
							
								143 148 149
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  | 
						
						
							| 151 | 
							
								142 150
							 | 
							eqbrtrd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( abs ‘ ( ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ‘ 𝑡 ) )  ≤  𝑧 )  | 
						
						
							| 152 | 
							
								151
							 | 
							ex | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  →  ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  ( abs ‘ ( ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ‘ 𝑡 ) )  ≤  𝑧 ) )  | 
						
						
							| 153 | 
							
								136 152
							 | 
							ralrimi | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  →  ∀ 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ( abs ‘ ( ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ‘ 𝑡 ) )  ≤  𝑧 )  | 
						
						
							| 154 | 
							
								153
							 | 
							ex | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧  →  ∀ 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ( abs ‘ ( ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ‘ 𝑡 ) )  ≤  𝑧 ) )  | 
						
						
							| 155 | 
							
								154
							 | 
							reximdv | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ∃ 𝑧  ∈  ℝ ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧  →  ∃ 𝑧  ∈  ℝ ∀ 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ( abs ‘ ( ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ‘ 𝑡 ) )  ≤  𝑧 ) )  | 
						
						
							| 156 | 
							
								133 155
							 | 
							mpd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ( abs ‘ ( ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ‘ 𝑡 ) )  ≤  𝑧 )  | 
						
						
							| 157 | 
							
								93 97 101 80 156
							 | 
							ioodvbdlimc2 | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ≠  ∅ )  | 
						
						
							| 158 | 
							
								64 83 100 157 68
							 | 
							ellimciota | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ℩ 𝑦 𝑦  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  | 
						
						
							| 159 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑦  =  𝑥  →  ( π  −  𝑦 )  =  ( π  −  𝑥 ) )  | 
						
						
							| 160 | 
							
								159
							 | 
							oveq1d | 
							⊢ ( 𝑦  =  𝑥  →  ( ( π  −  𝑦 )  /  𝑇 )  =  ( ( π  −  𝑥 )  /  𝑇 ) )  | 
						
						
							| 161 | 
							
								160
							 | 
							fveq2d | 
							⊢ ( 𝑦  =  𝑥  →  ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  =  ( ⌊ ‘ ( ( π  −  𝑥 )  /  𝑇 ) ) )  | 
						
						
							| 162 | 
							
								161
							 | 
							oveq1d | 
							⊢ ( 𝑦  =  𝑥  →  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 )  =  ( ( ⌊ ‘ ( ( π  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) )  | 
						
						
							| 163 | 
							
								162
							 | 
							cbvmptv | 
							⊢ ( 𝑦  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) )  =  ( 𝑥  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( π  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) )  | 
						
						
							| 164 | 
							
								
							 | 
							id | 
							⊢ ( 𝑧  =  𝑥  →  𝑧  =  𝑥 )  | 
						
						
							| 165 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑧  =  𝑥  →  ( ( 𝑦  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) ) ‘ 𝑧 )  =  ( ( 𝑦  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) ) ‘ 𝑥 ) )  | 
						
						
							| 166 | 
							
								164 165
							 | 
							oveq12d | 
							⊢ ( 𝑧  =  𝑥  →  ( 𝑧  +  ( ( 𝑦  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) ) ‘ 𝑧 ) )  =  ( 𝑥  +  ( ( 𝑦  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) ) ‘ 𝑥 ) ) )  | 
						
						
							| 167 | 
							
								166
							 | 
							cbvmptv | 
							⊢ ( 𝑧  ∈  ℝ  ↦  ( 𝑧  +  ( ( 𝑦  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) ) ‘ 𝑧 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑥  +  ( ( 𝑦  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) ) ‘ 𝑥 ) ) )  | 
						
						
							| 168 | 
							
								13 14 20 5 24 6 7 26 1 37 58 82 158 4 163 167
							 | 
							fourierdlem49 | 
							⊢ ( 𝜑  →  ( ( 𝐹  ↾  ( -∞ (,) 𝑋 ) )  limℂ  𝑋 )  ≠  ∅ )  | 
						
						
							| 169 | 
							
								93 97 101 80 156
							 | 
							ioodvbdlimc1 | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) )  ≠  ∅ )  | 
						
						
							| 170 | 
							
								64 83 110 169 68
							 | 
							ellimciota | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ℩ 𝑦 𝑦  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) )  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) )  | 
						
						
							| 171 | 
							
								
							 | 
							biid | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑤  ∈  ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑘  ∈  ℤ )  ∧  𝑤  =  ( 𝑋  +  ( 𝑘  ·  𝑇 ) ) )  ↔  ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑤  ∈  ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑘  ∈  ℤ )  ∧  𝑤  =  ( 𝑋  +  ( 𝑘  ·  𝑇 ) ) ) )  | 
						
						
							| 172 | 
							
								13 14 20 5 24 6 7 1 37 58 82 170 4 163 167 171
							 | 
							fourierdlem48 | 
							⊢ ( 𝜑  →  ( ( 𝐹  ↾  ( 𝑋 (,) +∞ ) )  limℂ  𝑋 )  ≠  ∅ )  | 
						
						
							| 173 | 
							
								168 172
							 | 
							jca | 
							⊢ ( 𝜑  →  ( ( ( 𝐹  ↾  ( -∞ (,) 𝑋 ) )  limℂ  𝑋 )  ≠  ∅  ∧  ( ( 𝐹  ↾  ( 𝑋 (,) +∞ ) )  limℂ  𝑋 )  ≠  ∅ ) )  |