Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem97.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
2 |
|
fourierdlem97.g |
⊢ 𝐺 = ( ℝ D 𝐹 ) |
3 |
|
fourierdlem97.p |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
4 |
|
fourierdlem97.a |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
5 |
|
fourierdlem97.b |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
6 |
|
fourierdlem97.t |
⊢ 𝑇 = ( 𝐵 − 𝐴 ) |
7 |
|
fourierdlem97.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
8 |
|
fourierdlem97.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
9 |
|
fourierdlem97.fper |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
10 |
|
fourierdlem97.qcn |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
11 |
|
fourierdlem97.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
12 |
|
fourierdlem97.d |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝐶 (,) +∞ ) ) |
13 |
|
fourierdlem97.j |
⊢ ( 𝜑 → 𝐽 ∈ ( 0 ..^ ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) ) |
14 |
|
fourierdlem97.v |
⊢ 𝑉 = ( ℩ 𝑔 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) |
15 |
|
fourierdlem97.h |
⊢ 𝐻 = ( 𝑠 ∈ ℝ ↦ if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) ) |
16 |
|
ioossre |
⊢ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ℝ |
17 |
16
|
a1i |
⊢ ( 𝜑 → ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ℝ ) |
18 |
17
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → 𝑠 ∈ ℝ ) |
19 |
|
iftrue |
⊢ ( 𝑠 ∈ dom 𝐺 → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) = ( 𝐺 ‘ 𝑠 ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ dom 𝐺 ) → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) = ( 𝐺 ‘ 𝑠 ) ) |
21 |
|
ssid |
⊢ ℝ ⊆ ℝ |
22 |
|
dvfre |
⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ ℝ ⊆ ℝ ) → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
23 |
1 21 22
|
sylancl |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
24 |
2
|
feq1i |
⊢ ( 𝐺 : dom ( ℝ D 𝐹 ) ⟶ ℝ ↔ ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
25 |
23 24
|
sylibr |
⊢ ( 𝜑 → 𝐺 : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ dom 𝐺 ) → 𝐺 : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
27 |
|
id |
⊢ ( 𝑠 ∈ dom 𝐺 → 𝑠 ∈ dom 𝐺 ) |
28 |
2
|
dmeqi |
⊢ dom 𝐺 = dom ( ℝ D 𝐹 ) |
29 |
27 28
|
eleqtrdi |
⊢ ( 𝑠 ∈ dom 𝐺 → 𝑠 ∈ dom ( ℝ D 𝐹 ) ) |
30 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ dom 𝐺 ) → 𝑠 ∈ dom ( ℝ D 𝐹 ) ) |
31 |
26 30
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑠 ) ∈ ℝ ) |
32 |
20 31
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ dom 𝐺 ) → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) ∈ ℝ ) |
33 |
32
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ 𝑠 ∈ dom 𝐺 ) → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) ∈ ℝ ) |
34 |
|
iffalse |
⊢ ( ¬ 𝑠 ∈ dom 𝐺 → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) = 0 ) |
35 |
|
0red |
⊢ ( ¬ 𝑠 ∈ dom 𝐺 → 0 ∈ ℝ ) |
36 |
34 35
|
eqeltrd |
⊢ ( ¬ 𝑠 ∈ dom 𝐺 → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) ∈ ℝ ) |
37 |
36
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ¬ 𝑠 ∈ dom 𝐺 ) → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) ∈ ℝ ) |
38 |
33 37
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) ∈ ℝ ) |
39 |
18 38
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) ∈ ℝ ) |
40 |
15
|
fvmpt2 |
⊢ ( ( 𝑠 ∈ ℝ ∧ if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) ∈ ℝ ) → ( 𝐻 ‘ 𝑠 ) = if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) ) |
41 |
18 39 40
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝐻 ‘ 𝑠 ) = if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) ) |
42 |
|
elioore |
⊢ ( 𝐷 ∈ ( 𝐶 (,) +∞ ) → 𝐷 ∈ ℝ ) |
43 |
12 42
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
44 |
11
|
rexrd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
45 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
46 |
45
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
47 |
|
ioogtlb |
⊢ ( ( 𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐷 ∈ ( 𝐶 (,) +∞ ) ) → 𝐶 < 𝐷 ) |
48 |
44 46 12 47
|
syl3anc |
⊢ ( 𝜑 → 𝐶 < 𝐷 ) |
49 |
|
oveq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 + ( ℎ · 𝑇 ) ) = ( 𝑥 + ( ℎ · 𝑇 ) ) ) |
50 |
49
|
eleq1d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 ↔ ( 𝑥 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 ) ) |
51 |
50
|
rexbidv |
⊢ ( 𝑦 = 𝑥 → ( ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ ℎ ∈ ℤ ( 𝑥 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 ) ) |
52 |
51
|
cbvrabv |
⊢ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } = { 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ ℎ ∈ ℤ ( 𝑥 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } |
53 |
52
|
uneq2i |
⊢ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { 𝐶 , 𝐷 } ∪ { 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ ℎ ∈ ℤ ( 𝑥 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } ) |
54 |
|
oveq1 |
⊢ ( 𝑘 = 𝑙 → ( 𝑘 · 𝑇 ) = ( 𝑙 · 𝑇 ) ) |
55 |
54
|
oveq2d |
⊢ ( 𝑘 = 𝑙 → ( 𝑦 + ( 𝑘 · 𝑇 ) ) = ( 𝑦 + ( 𝑙 · 𝑇 ) ) ) |
56 |
55
|
eleq1d |
⊢ ( 𝑘 = 𝑙 → ( ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
57 |
56
|
cbvrexvw |
⊢ ( ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 ) |
58 |
57
|
a1i |
⊢ ( 𝑦 ∈ ( 𝐶 [,] 𝐷 ) → ( ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
59 |
58
|
rabbiia |
⊢ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } = { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } |
60 |
59
|
uneq2i |
⊢ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) |
61 |
|
oveq1 |
⊢ ( 𝑙 = ℎ → ( 𝑙 · 𝑇 ) = ( ℎ · 𝑇 ) ) |
62 |
61
|
oveq2d |
⊢ ( 𝑙 = ℎ → ( 𝑦 + ( 𝑙 · 𝑇 ) ) = ( 𝑦 + ( ℎ · 𝑇 ) ) ) |
63 |
62
|
eleq1d |
⊢ ( 𝑙 = ℎ → ( ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 ↔ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 ) ) |
64 |
63
|
cbvrexvw |
⊢ ( ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 ) |
65 |
64
|
a1i |
⊢ ( 𝑦 ∈ ( 𝐶 [,] 𝐷 ) → ( ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 ) ) |
66 |
65
|
rabbiia |
⊢ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } = { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } |
67 |
66
|
uneq2i |
⊢ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } ) |
68 |
60 67
|
eqtri |
⊢ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } ) |
69 |
68
|
fveq2i |
⊢ ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) = ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } ) ) |
70 |
69
|
oveq1i |
⊢ ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) = ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) |
71 |
|
oveq1 |
⊢ ( 𝑘 = ℎ → ( 𝑘 · 𝑇 ) = ( ℎ · 𝑇 ) ) |
72 |
71
|
oveq2d |
⊢ ( 𝑘 = ℎ → ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) = ( ( 𝑄 ‘ 0 ) + ( ℎ · 𝑇 ) ) ) |
73 |
72
|
breq1d |
⊢ ( 𝑘 = ℎ → ( ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ↔ ( ( 𝑄 ‘ 0 ) + ( ℎ · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) ) |
74 |
73
|
cbvrabv |
⊢ { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } = { ℎ ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( ℎ · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } |
75 |
74
|
supeq1i |
⊢ sup ( { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) = sup ( { ℎ ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( ℎ · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) |
76 |
|
fveq2 |
⊢ ( 𝑗 = 𝑒 → ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ 𝑒 ) ) |
77 |
76
|
oveq1d |
⊢ ( 𝑗 = 𝑒 → ( ( 𝑄 ‘ 𝑗 ) + ( sup ( { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) · 𝑇 ) ) = ( ( 𝑄 ‘ 𝑒 ) + ( sup ( { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) · 𝑇 ) ) ) |
78 |
77
|
breq1d |
⊢ ( 𝑗 = 𝑒 → ( ( ( 𝑄 ‘ 𝑗 ) + ( sup ( { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ↔ ( ( 𝑄 ‘ 𝑒 ) + ( sup ( { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) ) |
79 |
78
|
cbvrabv |
⊢ { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( sup ( { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } = { 𝑒 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑒 ) + ( sup ( { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } |
80 |
79
|
supeq1i |
⊢ sup ( { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( sup ( { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) = sup ( { 𝑒 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑒 ) + ( sup ( { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) |
81 |
6 3 7 8 11 43 48 53 70 14 13 75 80
|
fourierdlem64 |
⊢ ( 𝜑 → ( ( sup ( { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( sup ( { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) ∈ ( 0 ..^ 𝑀 ) ∧ sup ( { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) ∈ ℤ ) ∧ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑙 ∈ ℤ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) ) |
82 |
81
|
simprd |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑙 ∈ ℤ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) |
83 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ∧ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → 𝜑 ) |
84 |
|
simpl2l |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ∧ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
85 |
|
cncff |
⊢ ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) → ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
86 |
10 85
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
87 |
|
ffun |
⊢ ( 𝐺 : dom ( ℝ D 𝐹 ) ⟶ ℝ → Fun 𝐺 ) |
88 |
25 87
|
syl |
⊢ ( 𝜑 → Fun 𝐺 ) |
89 |
88
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → Fun 𝐺 ) |
90 |
|
ffvresb |
⊢ ( Fun 𝐺 → ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ↔ ∀ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( 𝑠 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑠 ) ∈ ℂ ) ) ) |
91 |
89 90
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ↔ ∀ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( 𝑠 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑠 ) ∈ ℂ ) ) ) |
92 |
86 91
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∀ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( 𝑠 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑠 ) ∈ ℂ ) ) |
93 |
92
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑠 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑠 ) ∈ ℂ ) ) |
94 |
93
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ∈ dom 𝐺 ) |
95 |
94
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∀ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑠 ∈ dom 𝐺 ) |
96 |
|
dfss3 |
⊢ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom 𝐺 ↔ ∀ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑠 ∈ dom 𝐺 ) |
97 |
95 96
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom 𝐺 ) |
98 |
83 84 97
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ∧ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom 𝐺 ) |
99 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ∧ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) |
100 |
83 99
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ∧ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ) |
101 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ∧ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) |
102 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ∧ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) |
103 |
101 102
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ∧ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) |
104 |
3
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
105 |
7 104
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
106 |
8 105
|
mpbid |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
107 |
106
|
simpld |
⊢ ( 𝜑 → 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
108 |
|
elmapi |
⊢ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
109 |
107 108
|
syl |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
110 |
109
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
111 |
|
elfzofz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
112 |
111
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
113 |
110 112
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
114 |
113
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
115 |
114
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
116 |
115
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
117 |
|
fzofzp1 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
118 |
117
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
119 |
110 118
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
120 |
119
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
121 |
120
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
122 |
121
|
rexrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
123 |
|
elioore |
⊢ ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) → 𝑡 ∈ ℝ ) |
124 |
123
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → 𝑡 ∈ ℝ ) |
125 |
|
zre |
⊢ ( 𝑙 ∈ ℤ → 𝑙 ∈ ℝ ) |
126 |
125
|
adantl |
⊢ ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) → 𝑙 ∈ ℝ ) |
127 |
126
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → 𝑙 ∈ ℝ ) |
128 |
4 5
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
129 |
6 128
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
130 |
129
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → 𝑇 ∈ ℝ ) |
131 |
127 130
|
remulcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ( 𝑙 · 𝑇 ) ∈ ℝ ) |
132 |
124 131
|
resubcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ ℝ ) |
133 |
113
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
134 |
125
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) → 𝑙 ∈ ℝ ) |
135 |
129
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) → 𝑇 ∈ ℝ ) |
136 |
134 135
|
remulcld |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) → ( 𝑙 · 𝑇 ) ∈ ℝ ) |
137 |
133 136
|
readdcld |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) → ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) ∈ ℝ ) |
138 |
137
|
rexrd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) → ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) ∈ ℝ* ) |
139 |
138
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) ∈ ℝ* ) |
140 |
120 136
|
readdcld |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ∈ ℝ ) |
141 |
140
|
rexrd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ∈ ℝ* ) |
142 |
141
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ∈ ℝ* ) |
143 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) |
144 |
|
ioogtlb |
⊢ ( ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) ∈ ℝ* ∧ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ∈ ℝ* ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) < 𝑡 ) |
145 |
139 142 143 144
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) < 𝑡 ) |
146 |
133
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
147 |
146 131 124
|
ltaddsubd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) < 𝑡 ↔ ( 𝑄 ‘ 𝑖 ) < ( 𝑡 − ( 𝑙 · 𝑇 ) ) ) ) |
148 |
145 147
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑡 − ( 𝑙 · 𝑇 ) ) ) |
149 |
|
iooltub |
⊢ ( ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) ∈ ℝ* ∧ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ∈ ℝ* ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → 𝑡 < ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) |
150 |
139 142 143 149
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → 𝑡 < ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) |
151 |
124 131 121
|
ltsubaddd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ↔ 𝑡 < ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) |
152 |
150 151
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ( 𝑡 − ( 𝑙 · 𝑇 ) ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
153 |
116 122 132 148 152
|
eliood |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
154 |
100 103 153
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ∧ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
155 |
98 154
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ∧ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ) |
156 |
|
elioore |
⊢ ( 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) → 𝑡 ∈ ℝ ) |
157 |
|
recn |
⊢ ( 𝑡 ∈ ℝ → 𝑡 ∈ ℂ ) |
158 |
157
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑡 ∈ ℝ ) → 𝑡 ∈ ℂ ) |
159 |
|
zcn |
⊢ ( 𝑙 ∈ ℤ → 𝑙 ∈ ℂ ) |
160 |
159
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑡 ∈ ℝ ) → 𝑙 ∈ ℂ ) |
161 |
129
|
recnd |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
162 |
161
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑡 ∈ ℝ ) → 𝑇 ∈ ℂ ) |
163 |
160 162
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑡 ∈ ℝ ) → ( 𝑙 · 𝑇 ) ∈ ℂ ) |
164 |
158 163
|
npcand |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑡 ∈ ℝ ) → ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) + ( 𝑙 · 𝑇 ) ) = 𝑡 ) |
165 |
164
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑡 ∈ ℝ ) → 𝑡 = ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) + ( 𝑙 · 𝑇 ) ) ) |
166 |
165
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ) → 𝑡 = ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) + ( 𝑙 · 𝑇 ) ) ) |
167 |
|
ovex |
⊢ ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ V |
168 |
|
eleq1 |
⊢ ( 𝑠 = ( 𝑡 − ( 𝑙 · 𝑇 ) ) → ( 𝑠 ∈ dom 𝐺 ↔ ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ) ) |
169 |
168
|
anbi2d |
⊢ ( 𝑠 = ( 𝑡 − ( 𝑙 · 𝑇 ) ) → ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑠 ∈ dom 𝐺 ) ↔ ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ) ) ) |
170 |
|
oveq1 |
⊢ ( 𝑠 = ( 𝑡 − ( 𝑙 · 𝑇 ) ) → ( 𝑠 + ( 𝑙 · 𝑇 ) ) = ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) + ( 𝑙 · 𝑇 ) ) ) |
171 |
170
|
eleq1d |
⊢ ( 𝑠 = ( 𝑡 − ( 𝑙 · 𝑇 ) ) → ( ( 𝑠 + ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ↔ ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) + ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ) ) |
172 |
170
|
fveq2d |
⊢ ( 𝑠 = ( 𝑡 − ( 𝑙 · 𝑇 ) ) → ( 𝐺 ‘ ( 𝑠 + ( 𝑙 · 𝑇 ) ) ) = ( 𝐺 ‘ ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) + ( 𝑙 · 𝑇 ) ) ) ) |
173 |
|
fveq2 |
⊢ ( 𝑠 = ( 𝑡 − ( 𝑙 · 𝑇 ) ) → ( 𝐺 ‘ 𝑠 ) = ( 𝐺 ‘ ( 𝑡 − ( 𝑙 · 𝑇 ) ) ) ) |
174 |
172 173
|
eqeq12d |
⊢ ( 𝑠 = ( 𝑡 − ( 𝑙 · 𝑇 ) ) → ( ( 𝐺 ‘ ( 𝑠 + ( 𝑙 · 𝑇 ) ) ) = ( 𝐺 ‘ 𝑠 ) ↔ ( 𝐺 ‘ ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) + ( 𝑙 · 𝑇 ) ) ) = ( 𝐺 ‘ ( 𝑡 − ( 𝑙 · 𝑇 ) ) ) ) ) |
175 |
171 174
|
anbi12d |
⊢ ( 𝑠 = ( 𝑡 − ( 𝑙 · 𝑇 ) ) → ( ( ( 𝑠 + ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ∧ ( 𝐺 ‘ ( 𝑠 + ( 𝑙 · 𝑇 ) ) ) = ( 𝐺 ‘ 𝑠 ) ) ↔ ( ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) + ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ∧ ( 𝐺 ‘ ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) + ( 𝑙 · 𝑇 ) ) ) = ( 𝐺 ‘ ( 𝑡 − ( 𝑙 · 𝑇 ) ) ) ) ) ) |
176 |
169 175
|
imbi12d |
⊢ ( 𝑠 = ( 𝑡 − ( 𝑙 · 𝑇 ) ) → ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑠 ∈ dom 𝐺 ) → ( ( 𝑠 + ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ∧ ( 𝐺 ‘ ( 𝑠 + ( 𝑙 · 𝑇 ) ) ) = ( 𝐺 ‘ 𝑠 ) ) ) ↔ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ) → ( ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) + ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ∧ ( 𝐺 ‘ ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) + ( 𝑙 · 𝑇 ) ) ) = ( 𝐺 ‘ ( 𝑡 − ( 𝑙 · 𝑇 ) ) ) ) ) ) ) |
177 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
178 |
177
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
179 |
1 178
|
fssd |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℂ ) |
180 |
179
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) → 𝐹 : ℝ ⟶ ℂ ) |
181 |
125
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) → 𝑙 ∈ ℝ ) |
182 |
129
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) → 𝑇 ∈ ℝ ) |
183 |
181 182
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) → ( 𝑙 · 𝑇 ) ∈ ℝ ) |
184 |
179
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑠 ∈ ℝ ) → 𝐹 : ℝ ⟶ ℂ ) |
185 |
129
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑠 ∈ ℝ ) → 𝑇 ∈ ℝ ) |
186 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑠 ∈ ℝ ) → 𝑙 ∈ ℤ ) |
187 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑠 ∈ ℝ ) → 𝑠 ∈ ℝ ) |
188 |
9
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑠 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
189 |
184 185 186 187 188
|
fperiodmul |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑠 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑠 + ( 𝑙 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑠 ) ) |
190 |
180 183 189 2
|
fperdvper |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑠 ∈ dom 𝐺 ) → ( ( 𝑠 + ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ∧ ( 𝐺 ‘ ( 𝑠 + ( 𝑙 · 𝑇 ) ) ) = ( 𝐺 ‘ 𝑠 ) ) ) |
191 |
167 176 190
|
vtocl |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ) → ( ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) + ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ∧ ( 𝐺 ‘ ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) + ( 𝑙 · 𝑇 ) ) ) = ( 𝐺 ‘ ( 𝑡 − ( 𝑙 · 𝑇 ) ) ) ) ) |
192 |
191
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ) → ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) + ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ) |
193 |
192
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ) → ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) + ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ) |
194 |
166 193
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ) → 𝑡 ∈ dom 𝐺 ) |
195 |
194
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑡 ∈ ℝ ) → ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 → 𝑡 ∈ dom 𝐺 ) ) |
196 |
156 195
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 → 𝑡 ∈ dom 𝐺 ) ) |
197 |
196
|
adantlrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 → 𝑡 ∈ dom 𝐺 ) ) |
198 |
197
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ∧ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 → 𝑡 ∈ dom 𝐺 ) ) |
199 |
155 198
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ∧ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → 𝑡 ∈ dom 𝐺 ) |
200 |
199
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ∧ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ∀ 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) 𝑡 ∈ dom 𝐺 ) |
201 |
|
dfss3 |
⊢ ( ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ dom 𝐺 ↔ ∀ 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) 𝑡 ∈ dom 𝐺 ) |
202 |
200 201
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ∧ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ dom 𝐺 ) |
203 |
202
|
3exp |
⊢ ( 𝜑 → ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) → ( ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) → ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ dom 𝐺 ) ) ) |
204 |
203
|
rexlimdvv |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑙 ∈ ℤ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) → ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ dom 𝐺 ) ) |
205 |
82 204
|
mpd |
⊢ ( 𝜑 → ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ dom 𝐺 ) |
206 |
205
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → 𝑠 ∈ dom 𝐺 ) |
207 |
206
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) = ( 𝐺 ‘ 𝑠 ) ) |
208 |
41 207
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝐺 ‘ 𝑠 ) = ( 𝐻 ‘ 𝑠 ) ) |
209 |
208
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑠 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ↦ ( 𝐺 ‘ 𝑠 ) ) = ( 𝑠 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ↦ ( 𝐻 ‘ 𝑠 ) ) ) |
210 |
28
|
a1i |
⊢ ( 𝜑 → dom 𝐺 = dom ( ℝ D 𝐹 ) ) |
211 |
210
|
feq2d |
⊢ ( 𝜑 → ( 𝐺 : dom 𝐺 ⟶ ℝ ↔ 𝐺 : dom ( ℝ D 𝐹 ) ⟶ ℝ ) ) |
212 |
25 211
|
mpbird |
⊢ ( 𝜑 → 𝐺 : dom 𝐺 ⟶ ℝ ) |
213 |
212 205
|
feqresmpt |
⊢ ( 𝜑 → ( 𝐺 ↾ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ↦ ( 𝐺 ‘ 𝑠 ) ) ) |
214 |
38 15
|
fmptd |
⊢ ( 𝜑 → 𝐻 : ℝ ⟶ ℝ ) |
215 |
214 17
|
feqresmpt |
⊢ ( 𝜑 → ( 𝐻 ↾ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ↦ ( 𝐻 ‘ 𝑠 ) ) ) |
216 |
209 213 215
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐺 ↾ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) = ( 𝐻 ↾ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) ) |
217 |
214 178
|
fssd |
⊢ ( 𝜑 → 𝐻 : ℝ ⟶ ℂ ) |
218 |
15
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ dom 𝐺 ) → 𝐻 = ( 𝑠 ∈ ℝ ↦ if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) ) ) |
219 |
|
eleq1 |
⊢ ( 𝑠 = ( 𝑥 + 𝑇 ) → ( 𝑠 ∈ dom 𝐺 ↔ ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) ) |
220 |
|
fveq2 |
⊢ ( 𝑠 = ( 𝑥 + 𝑇 ) → ( 𝐺 ‘ 𝑠 ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ) |
221 |
219 220
|
ifbieq1d |
⊢ ( 𝑠 = ( 𝑥 + 𝑇 ) → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) = if ( ( 𝑥 + 𝑇 ) ∈ dom 𝐺 , ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) , 0 ) ) |
222 |
179 129 9 2
|
fperdvper |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐺 ) → ( ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ∧ ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐺 ‘ 𝑥 ) ) ) |
223 |
222
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) |
224 |
223
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐺 ) → if ( ( 𝑥 + 𝑇 ) ∈ dom 𝐺 , ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) , 0 ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ) |
225 |
221 224
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐺 ) ∧ 𝑠 = ( 𝑥 + 𝑇 ) ) → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ) |
226 |
225
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ dom 𝐺 ) ∧ 𝑠 = ( 𝑥 + 𝑇 ) ) → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ) |
227 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
228 |
129
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑇 ∈ ℝ ) |
229 |
227 228
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑥 + 𝑇 ) ∈ ℝ ) |
230 |
229
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝑥 + 𝑇 ) ∈ ℝ ) |
231 |
212
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ dom 𝐺 ) → 𝐺 : dom 𝐺 ⟶ ℝ ) |
232 |
223
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) |
233 |
231 232
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ∈ ℝ ) |
234 |
218 226 230 233
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐻 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ) |
235 |
222
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
236 |
235
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
237 |
|
eleq1 |
⊢ ( 𝑠 = 𝑥 → ( 𝑠 ∈ dom 𝐺 ↔ 𝑥 ∈ dom 𝐺 ) ) |
238 |
|
fveq2 |
⊢ ( 𝑠 = 𝑥 → ( 𝐺 ‘ 𝑠 ) = ( 𝐺 ‘ 𝑥 ) ) |
239 |
237 238
|
ifbieq1d |
⊢ ( 𝑠 = 𝑥 → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) = if ( 𝑥 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑥 ) , 0 ) ) |
240 |
239
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ dom 𝐺 ) ∧ 𝑠 = 𝑥 ) → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) = if ( 𝑥 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑥 ) , 0 ) ) |
241 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ dom 𝐺 ) → 𝑥 ∈ ℝ ) |
242 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐺 ) → 𝑥 ∈ dom 𝐺 ) |
243 |
242
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐺 ) → if ( 𝑥 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑥 ) , 0 ) = ( 𝐺 ‘ 𝑥 ) ) |
244 |
212
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ ) |
245 |
243 244
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐺 ) → if ( 𝑥 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑥 ) , 0 ) ∈ ℝ ) |
246 |
245
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ dom 𝐺 ) → if ( 𝑥 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑥 ) , 0 ) ∈ ℝ ) |
247 |
218 240 241 246
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐻 ‘ 𝑥 ) = if ( 𝑥 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑥 ) , 0 ) ) |
248 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ dom 𝐺 ) → 𝑥 ∈ dom 𝐺 ) |
249 |
248
|
iftrued |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ dom 𝐺 ) → if ( 𝑥 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑥 ) , 0 ) = ( 𝐺 ‘ 𝑥 ) ) |
250 |
247 249
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) |
251 |
234 236 250
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐻 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐻 ‘ 𝑥 ) ) |
252 |
229
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑥 + 𝑇 ) ∈ ℂ ) |
253 |
228
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑇 ∈ ℂ ) |
254 |
252 253
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 + 𝑇 ) + - 𝑇 ) = ( ( 𝑥 + 𝑇 ) − 𝑇 ) ) |
255 |
227
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℂ ) |
256 |
255 253
|
pncand |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 + 𝑇 ) − 𝑇 ) = 𝑥 ) |
257 |
254 256
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑥 = ( ( 𝑥 + 𝑇 ) + - 𝑇 ) ) |
258 |
257
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) → 𝑥 = ( ( 𝑥 + 𝑇 ) + - 𝑇 ) ) |
259 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) → ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) |
260 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) → 𝜑 ) |
261 |
260 259
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) → ( 𝜑 ∧ ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) ) |
262 |
|
eleq1 |
⊢ ( 𝑦 = ( 𝑥 + 𝑇 ) → ( 𝑦 ∈ dom 𝐺 ↔ ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) ) |
263 |
262
|
anbi2d |
⊢ ( 𝑦 = ( 𝑥 + 𝑇 ) → ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐺 ) ↔ ( 𝜑 ∧ ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) ) ) |
264 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑥 + 𝑇 ) → ( 𝑦 + - 𝑇 ) = ( ( 𝑥 + 𝑇 ) + - 𝑇 ) ) |
265 |
264
|
eleq1d |
⊢ ( 𝑦 = ( 𝑥 + 𝑇 ) → ( ( 𝑦 + - 𝑇 ) ∈ dom 𝐺 ↔ ( ( 𝑥 + 𝑇 ) + - 𝑇 ) ∈ dom 𝐺 ) ) |
266 |
264
|
fveq2d |
⊢ ( 𝑦 = ( 𝑥 + 𝑇 ) → ( 𝐺 ‘ ( 𝑦 + - 𝑇 ) ) = ( 𝐺 ‘ ( ( 𝑥 + 𝑇 ) + - 𝑇 ) ) ) |
267 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑥 + 𝑇 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ) |
268 |
266 267
|
eqeq12d |
⊢ ( 𝑦 = ( 𝑥 + 𝑇 ) → ( ( 𝐺 ‘ ( 𝑦 + - 𝑇 ) ) = ( 𝐺 ‘ 𝑦 ) ↔ ( 𝐺 ‘ ( ( 𝑥 + 𝑇 ) + - 𝑇 ) ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ) ) |
269 |
265 268
|
anbi12d |
⊢ ( 𝑦 = ( 𝑥 + 𝑇 ) → ( ( ( 𝑦 + - 𝑇 ) ∈ dom 𝐺 ∧ ( 𝐺 ‘ ( 𝑦 + - 𝑇 ) ) = ( 𝐺 ‘ 𝑦 ) ) ↔ ( ( ( 𝑥 + 𝑇 ) + - 𝑇 ) ∈ dom 𝐺 ∧ ( 𝐺 ‘ ( ( 𝑥 + 𝑇 ) + - 𝑇 ) ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ) ) ) |
270 |
263 269
|
imbi12d |
⊢ ( 𝑦 = ( 𝑥 + 𝑇 ) → ( ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐺 ) → ( ( 𝑦 + - 𝑇 ) ∈ dom 𝐺 ∧ ( 𝐺 ‘ ( 𝑦 + - 𝑇 ) ) = ( 𝐺 ‘ 𝑦 ) ) ) ↔ ( ( 𝜑 ∧ ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) → ( ( ( 𝑥 + 𝑇 ) + - 𝑇 ) ∈ dom 𝐺 ∧ ( 𝐺 ‘ ( ( 𝑥 + 𝑇 ) + - 𝑇 ) ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ) ) ) ) |
271 |
129
|
renegcld |
⊢ ( 𝜑 → - 𝑇 ∈ ℝ ) |
272 |
161
|
mulm1d |
⊢ ( 𝜑 → ( - 1 · 𝑇 ) = - 𝑇 ) |
273 |
272
|
eqcomd |
⊢ ( 𝜑 → - 𝑇 = ( - 1 · 𝑇 ) ) |
274 |
273
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → - 𝑇 = ( - 1 · 𝑇 ) ) |
275 |
274
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑦 + - 𝑇 ) = ( 𝑦 + ( - 1 · 𝑇 ) ) ) |
276 |
275
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑦 + - 𝑇 ) ) = ( 𝐹 ‘ ( 𝑦 + ( - 1 · 𝑇 ) ) ) ) |
277 |
179
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝐹 : ℝ ⟶ ℂ ) |
278 |
129
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑇 ∈ ℝ ) |
279 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 1 ∈ ℤ ) |
280 |
279
|
znegcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → - 1 ∈ ℤ ) |
281 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
282 |
9
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
283 |
277 278 280 281 282
|
fperiodmul |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑦 + ( - 1 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑦 ) ) |
284 |
276 283
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑦 + - 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ) |
285 |
179 271 284 2
|
fperdvper |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐺 ) → ( ( 𝑦 + - 𝑇 ) ∈ dom 𝐺 ∧ ( 𝐺 ‘ ( 𝑦 + - 𝑇 ) ) = ( 𝐺 ‘ 𝑦 ) ) ) |
286 |
270 285
|
vtoclg |
⊢ ( ( 𝑥 + 𝑇 ) ∈ dom 𝐺 → ( ( 𝜑 ∧ ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) → ( ( ( 𝑥 + 𝑇 ) + - 𝑇 ) ∈ dom 𝐺 ∧ ( 𝐺 ‘ ( ( 𝑥 + 𝑇 ) + - 𝑇 ) ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ) ) ) |
287 |
259 261 286
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) → ( ( ( 𝑥 + 𝑇 ) + - 𝑇 ) ∈ dom 𝐺 ∧ ( 𝐺 ‘ ( ( 𝑥 + 𝑇 ) + - 𝑇 ) ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ) ) |
288 |
287
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) → ( ( 𝑥 + 𝑇 ) + - 𝑇 ) ∈ dom 𝐺 ) |
289 |
258 288
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) → 𝑥 ∈ dom 𝐺 ) |
290 |
289
|
stoic1a |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ dom 𝐺 ) → ¬ ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) |
291 |
290
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ dom 𝐺 ) → if ( ( 𝑥 + 𝑇 ) ∈ dom 𝐺 , ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) , 0 ) = 0 ) |
292 |
15
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ dom 𝐺 ) → 𝐻 = ( 𝑠 ∈ ℝ ↦ if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) ) ) |
293 |
221
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ dom 𝐺 ) ∧ 𝑠 = ( 𝑥 + 𝑇 ) ) → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) = if ( ( 𝑥 + 𝑇 ) ∈ dom 𝐺 , ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) , 0 ) ) |
294 |
229
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ dom 𝐺 ) → ( 𝑥 + 𝑇 ) ∈ ℝ ) |
295 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ dom 𝐺 ) → 0 ∈ ℝ ) |
296 |
291 295
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ dom 𝐺 ) → if ( ( 𝑥 + 𝑇 ) ∈ dom 𝐺 , ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) , 0 ) ∈ ℝ ) |
297 |
292 293 294 296
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ dom 𝐺 ) → ( 𝐻 ‘ ( 𝑥 + 𝑇 ) ) = if ( ( 𝑥 + 𝑇 ) ∈ dom 𝐺 , ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) , 0 ) ) |
298 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ dom 𝐺 ) → ¬ 𝑥 ∈ dom 𝐺 ) |
299 |
298
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ dom 𝐺 ) → if ( 𝑥 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑥 ) , 0 ) = 0 ) |
300 |
239 299
|
sylan9eqr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ dom 𝐺 ) ∧ 𝑠 = 𝑥 ) → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) = 0 ) |
301 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ dom 𝐺 ) → 𝑥 ∈ ℝ ) |
302 |
292 300 301 295
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ dom 𝐺 ) → ( 𝐻 ‘ 𝑥 ) = 0 ) |
303 |
291 297 302
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ dom 𝐺 ) → ( 𝐻 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐻 ‘ 𝑥 ) ) |
304 |
251 303
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐻 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐻 ‘ 𝑥 ) ) |
305 |
|
elioore |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → 𝑠 ∈ ℝ ) |
306 |
305
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ∈ ℝ ) |
307 |
305 38
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) ∈ ℝ ) |
308 |
306 307 40
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐻 ‘ 𝑠 ) = if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) ) |
309 |
308
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐻 ‘ 𝑠 ) = if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) ) |
310 |
94
|
iftrued |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) = ( 𝐺 ‘ 𝑠 ) ) |
311 |
309 310
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐻 ‘ 𝑠 ) = ( 𝐺 ‘ 𝑠 ) ) |
312 |
311
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐻 ‘ 𝑠 ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐺 ‘ 𝑠 ) ) ) |
313 |
214
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐻 : ℝ ⟶ ℝ ) |
314 |
|
ioossre |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ |
315 |
314
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
316 |
313 315
|
feqresmpt |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐻 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐻 ‘ 𝑠 ) ) ) |
317 |
212
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐺 : dom 𝐺 ⟶ ℝ ) |
318 |
317 97
|
feqresmpt |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐺 ‘ 𝑠 ) ) ) |
319 |
312 316 318
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐻 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
320 |
319 10
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐻 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
321 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐶 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐶 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
322 |
|
oveq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 + ( 𝑙 · 𝑇 ) ) = ( 𝑦 + ( 𝑙 · 𝑇 ) ) ) |
323 |
322
|
eleq1d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 ↔ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
324 |
323
|
rexbidv |
⊢ ( 𝑧 = 𝑦 → ( ∃ 𝑙 ∈ ℤ ( 𝑧 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
325 |
324
|
cbvrabv |
⊢ { 𝑧 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑧 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } = { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } |
326 |
325
|
uneq2i |
⊢ ( { 𝐶 , 𝐷 } ∪ { 𝑧 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑧 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) |
327 |
326
|
eqcomi |
⊢ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { 𝐶 , 𝐷 } ∪ { 𝑧 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑧 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) |
328 |
60
|
fveq2i |
⊢ ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) = ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) |
329 |
328
|
oveq1i |
⊢ ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) = ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) |
330 |
|
isoeq5 |
⊢ ( ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } ) → ( 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) ) |
331 |
67 330
|
ax-mp |
⊢ ( 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) |
332 |
331
|
iotabii |
⊢ ( ℩ 𝑔 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) = ( ℩ 𝑔 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) |
333 |
|
isoeq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) ) |
334 |
333
|
cbviotavw |
⊢ ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) = ( ℩ 𝑔 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) |
335 |
332 334 14
|
3eqtr4ri |
⊢ 𝑉 = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) |
336 |
|
id |
⊢ ( 𝑣 = 𝑥 → 𝑣 = 𝑥 ) |
337 |
|
oveq2 |
⊢ ( 𝑣 = 𝑥 → ( 𝐵 − 𝑣 ) = ( 𝐵 − 𝑥 ) ) |
338 |
337
|
oveq1d |
⊢ ( 𝑣 = 𝑥 → ( ( 𝐵 − 𝑣 ) / 𝑇 ) = ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) |
339 |
338
|
fveq2d |
⊢ ( 𝑣 = 𝑥 → ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) = ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) ) |
340 |
339
|
oveq1d |
⊢ ( 𝑣 = 𝑥 → ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) = ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) |
341 |
336 340
|
oveq12d |
⊢ ( 𝑣 = 𝑥 → ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) = ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) |
342 |
341
|
cbvmptv |
⊢ ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) |
343 |
|
eqeq1 |
⊢ ( 𝑢 = 𝑧 → ( 𝑢 = 𝐵 ↔ 𝑧 = 𝐵 ) ) |
344 |
|
id |
⊢ ( 𝑢 = 𝑧 → 𝑢 = 𝑧 ) |
345 |
343 344
|
ifbieq2d |
⊢ ( 𝑢 = 𝑧 → if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) = if ( 𝑧 = 𝐵 , 𝐴 , 𝑧 ) ) |
346 |
345
|
cbvmptv |
⊢ ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) = ( 𝑧 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑧 = 𝐵 , 𝐴 , 𝑧 ) ) |
347 |
|
eqid |
⊢ ( ( 𝑉 ‘ ( 𝐽 + 1 ) ) − ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) = ( ( 𝑉 ‘ ( 𝐽 + 1 ) ) − ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) |
348 |
|
eqid |
⊢ ( 𝐻 ↾ ( ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ 𝐽 ) ) ) (,) ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) ) = ( 𝐻 ↾ ( ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ 𝐽 ) ) ) (,) ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) ) |
349 |
|
eqid |
⊢ ( 𝑧 ∈ ( ( ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ 𝐽 ) ) ) + ( ( 𝑉 ‘ ( 𝐽 + 1 ) ) − ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) ) (,) ( ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) + ( ( 𝑉 ‘ ( 𝐽 + 1 ) ) − ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) ) ) ↦ ( ( 𝐻 ↾ ( ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ 𝐽 ) ) ) (,) ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) ) ‘ ( 𝑧 − ( ( 𝑉 ‘ ( 𝐽 + 1 ) ) − ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) ) ) ) = ( 𝑧 ∈ ( ( ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ 𝐽 ) ) ) + ( ( 𝑉 ‘ ( 𝐽 + 1 ) ) − ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) ) (,) ( ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) + ( ( 𝑉 ‘ ( 𝐽 + 1 ) ) − ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) ) ) ↦ ( ( 𝐻 ↾ ( ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ 𝐽 ) ) ) (,) ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) ) ‘ ( 𝑧 − ( ( 𝑉 ‘ ( 𝐽 + 1 ) ) − ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) ) ) ) |
350 |
|
fveq2 |
⊢ ( 𝑖 = 𝑡 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑡 ) ) |
351 |
350
|
breq1d |
⊢ ( 𝑖 = 𝑡 → ( ( 𝑄 ‘ 𝑖 ) ≤ ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) ↔ ( 𝑄 ‘ 𝑡 ) ≤ ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) ) ) |
352 |
351
|
cbvrabv |
⊢ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) } = { 𝑡 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑡 ) ≤ ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) } |
353 |
|
fveq2 |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑤 ) = ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) |
354 |
353
|
fveq2d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑤 ) ) = ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) ) |
355 |
354
|
eqcomd |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) = ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑤 ) ) ) |
356 |
355
|
breq2d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑄 ‘ 𝑡 ) ≤ ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) ↔ ( 𝑄 ‘ 𝑡 ) ≤ ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑤 ) ) ) ) |
357 |
356
|
rabbidv |
⊢ ( 𝑤 = 𝑥 → { 𝑡 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑡 ) ≤ ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) } = { 𝑡 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑡 ) ≤ ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑤 ) ) } ) |
358 |
352 357
|
eqtr2id |
⊢ ( 𝑤 = 𝑥 → { 𝑡 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑡 ) ≤ ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑤 ) ) } = { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) } ) |
359 |
358
|
supeq1d |
⊢ ( 𝑤 = 𝑥 → sup ( { 𝑡 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑡 ) ≤ ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑤 ) ) } , ℝ , < ) = sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) } , ℝ , < ) ) |
360 |
359
|
cbvmptv |
⊢ ( 𝑤 ∈ ℝ ↦ sup ( { 𝑡 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑡 ) ≤ ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑤 ) ) } , ℝ , < ) ) = ( 𝑥 ∈ ℝ ↦ sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) } , ℝ , < ) ) |
361 |
3 6 7 8 217 304 320 11 12 321 327 329 335 342 346 13 347 348 349 360
|
fourierdlem90 |
⊢ ( 𝜑 → ( 𝐻 ↾ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) ∈ ( ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) –cn→ ℂ ) ) |
362 |
216 361
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐺 ↾ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) ∈ ( ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) –cn→ ℂ ) ) |