Description: An operation's value belongs to its codomain. (Contributed by NM, 27-Aug-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fovcdm | ⊢ ( ( 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi | ⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → 〈 𝐴 , 𝐵 〉 ∈ ( 𝑅 × 𝑆 ) ) | |
| 2 | df-ov | ⊢ ( 𝐴 𝐹 𝐵 ) = ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) | |
| 3 | ffvelcdm | ⊢ ( ( 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 ∧ 〈 𝐴 , 𝐵 〉 ∈ ( 𝑅 × 𝑆 ) ) → ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) ∈ 𝐶 ) | |
| 4 | 2 3 | eqeltrid | ⊢ ( ( 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 ∧ 〈 𝐴 , 𝐵 〉 ∈ ( 𝑅 × 𝑆 ) ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 ) |
| 5 | 1 4 | sylan2 | ⊢ ( ( 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 ∧ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 ) |
| 6 | 5 | 3impb | ⊢ ( ( 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 ) |