Metamath Proof Explorer
		
		
		
		Description:  An operation's value belongs to its codomain.  (Contributed by Mario
       Carneiro, 29-Dec-2016)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | fovcdmd.1 | ⊢ ( 𝜑  →  𝐹 : ( 𝑅  ×  𝑆 ) ⟶ 𝐶 ) | 
					
						|  |  | fovcdmd.2 | ⊢ ( 𝜑  →  𝐴  ∈  𝑅 ) | 
					
						|  |  | fovcdmd.3 | ⊢ ( 𝜑  →  𝐵  ∈  𝑆 ) | 
				
					|  | Assertion | fovcdmd | ⊢  ( 𝜑  →  ( 𝐴 𝐹 𝐵 )  ∈  𝐶 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fovcdmd.1 | ⊢ ( 𝜑  →  𝐹 : ( 𝑅  ×  𝑆 ) ⟶ 𝐶 ) | 
						
							| 2 |  | fovcdmd.2 | ⊢ ( 𝜑  →  𝐴  ∈  𝑅 ) | 
						
							| 3 |  | fovcdmd.3 | ⊢ ( 𝜑  →  𝐵  ∈  𝑆 ) | 
						
							| 4 |  | fovcdm | ⊢ ( ( 𝐹 : ( 𝑅  ×  𝑆 ) ⟶ 𝐶  ∧  𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆 )  →  ( 𝐴 𝐹 𝐵 )  ∈  𝐶 ) | 
						
							| 5 | 1 2 3 4 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴 𝐹 𝐵 )  ∈  𝐶 ) |