Metamath Proof Explorer


Theorem fovcdmd

Description: An operation's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016)

Ref Expression
Hypotheses fovcdmd.1 ( 𝜑𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 )
fovcdmd.2 ( 𝜑𝐴𝑅 )
fovcdmd.3 ( 𝜑𝐵𝑆 )
Assertion fovcdmd ( 𝜑 → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 )

Proof

Step Hyp Ref Expression
1 fovcdmd.1 ( 𝜑𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 )
2 fovcdmd.2 ( 𝜑𝐴𝑅 )
3 fovcdmd.3 ( 𝜑𝐵𝑆 )
4 fovcdm ( ( 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶𝐴𝑅𝐵𝑆 ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 )
5 1 2 3 4 syl3anc ( 𝜑 → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 )