Description: An operation's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fovcdmd.1 | ⊢ ( 𝜑 → 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 ) | |
| Assertion | fovcdmda | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fovcdmd.1 | ⊢ ( 𝜑 → 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 ) | |
| 2 | fovcdm | ⊢ ( ( 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 ) | |
| 3 | 1 2 | syl3an1 | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 ) |
| 4 | 3 | 3expb | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 ) |