Metamath Proof Explorer


Theorem fovcl

Description: Closure law for an operation. (Contributed by NM, 19-Apr-2007) (Proof shortened by AV, 9-Mar-2025)

Ref Expression
Hypothesis fovcl.1 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶
Assertion fovcl ( ( 𝐴𝑅𝐵𝑆 ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 )

Proof

Step Hyp Ref Expression
1 fovcl.1 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶
2 1 a1i ( 𝐴𝑅𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 )
3 2 fovcld ( ( 𝐴𝑅𝐴𝑅𝐵𝑆 ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 )
4 3 3anidm12 ( ( 𝐴𝑅𝐵𝑆 ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 )