Metamath Proof Explorer


Theorem fovcl

Description: Closure law for an operation. (Contributed by NM, 19-Apr-2007)

Ref Expression
Hypothesis fovcl.1 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶
Assertion fovcl ( ( 𝐴𝑅𝐵𝑆 ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 )

Proof

Step Hyp Ref Expression
1 fovcl.1 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶
2 ffnov ( 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 ↔ ( 𝐹 Fn ( 𝑅 × 𝑆 ) ∧ ∀ 𝑥𝑅𝑦𝑆 ( 𝑥 𝐹 𝑦 ) ∈ 𝐶 ) )
3 2 simprbi ( 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 → ∀ 𝑥𝑅𝑦𝑆 ( 𝑥 𝐹 𝑦 ) ∈ 𝐶 )
4 1 3 ax-mp 𝑥𝑅𝑦𝑆 ( 𝑥 𝐹 𝑦 ) ∈ 𝐶
5 oveq1 ( 𝑥 = 𝐴 → ( 𝑥 𝐹 𝑦 ) = ( 𝐴 𝐹 𝑦 ) )
6 5 eleq1d ( 𝑥 = 𝐴 → ( ( 𝑥 𝐹 𝑦 ) ∈ 𝐶 ↔ ( 𝐴 𝐹 𝑦 ) ∈ 𝐶 ) )
7 oveq2 ( 𝑦 = 𝐵 → ( 𝐴 𝐹 𝑦 ) = ( 𝐴 𝐹 𝐵 ) )
8 7 eleq1d ( 𝑦 = 𝐵 → ( ( 𝐴 𝐹 𝑦 ) ∈ 𝐶 ↔ ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 ) )
9 6 8 rspc2v ( ( 𝐴𝑅𝐵𝑆 ) → ( ∀ 𝑥𝑅𝑦𝑆 ( 𝑥 𝐹 𝑦 ) ∈ 𝐶 → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 ) )
10 4 9 mpi ( ( 𝐴𝑅𝐵𝑆 ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 )