Metamath Proof Explorer


Theorem fovrn

Description: An operation's value belongs to its codomain. (Contributed by NM, 27-Aug-2006)

Ref Expression
Assertion fovrn ( ( 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶𝐴𝑅𝐵𝑆 ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 )

Proof

Step Hyp Ref Expression
1 opelxpi ( ( 𝐴𝑅𝐵𝑆 ) → ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑅 × 𝑆 ) )
2 df-ov ( 𝐴 𝐹 𝐵 ) = ( 𝐹 ‘ ⟨ 𝐴 , 𝐵 ⟩ )
3 ffvelrn ( ( 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 ∧ ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑅 × 𝑆 ) ) → ( 𝐹 ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ∈ 𝐶 )
4 2 3 eqeltrid ( ( 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 ∧ ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑅 × 𝑆 ) ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 )
5 1 4 sylan2 ( ( 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 ∧ ( 𝐴𝑅𝐵𝑆 ) ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 )
6 5 3impb ( ( 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶𝐴𝑅𝐵𝑆 ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 )