Description: An operation's value belongs to its codomain. (Contributed by NM, 27-Aug-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | fovrn | ⊢ ( ( 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi | ⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → 〈 𝐴 , 𝐵 〉 ∈ ( 𝑅 × 𝑆 ) ) | |
2 | df-ov | ⊢ ( 𝐴 𝐹 𝐵 ) = ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) | |
3 | ffvelrn | ⊢ ( ( 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 ∧ 〈 𝐴 , 𝐵 〉 ∈ ( 𝑅 × 𝑆 ) ) → ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) ∈ 𝐶 ) | |
4 | 2 3 | eqeltrid | ⊢ ( ( 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 ∧ 〈 𝐴 , 𝐵 〉 ∈ ( 𝑅 × 𝑆 ) ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 ) |
5 | 1 4 | sylan2 | ⊢ ( ( 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 ∧ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 ) |
6 | 5 | 3impb | ⊢ ( ( 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 ) |