Metamath Proof Explorer


Theorem fovrnd

Description: An operation's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016)

Ref Expression
Hypotheses fovrnd.1 ( 𝜑𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 )
fovrnd.2 ( 𝜑𝐴𝑅 )
fovrnd.3 ( 𝜑𝐵𝑆 )
Assertion fovrnd ( 𝜑 → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 )

Proof

Step Hyp Ref Expression
1 fovrnd.1 ( 𝜑𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 )
2 fovrnd.2 ( 𝜑𝐴𝑅 )
3 fovrnd.3 ( 𝜑𝐵𝑆 )
4 fovrn ( ( 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶𝐴𝑅𝐵𝑆 ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 )
5 1 2 3 4 syl3anc ( 𝜑 → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 )