Metamath Proof Explorer
Description: An operation's value belongs to its codomain. (Contributed by Mario
Carneiro, 29-Dec-2016)
|
|
Ref |
Expression |
|
Hypotheses |
fovrnd.1 |
⊢ ( 𝜑 → 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 ) |
|
|
fovrnd.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑅 ) |
|
|
fovrnd.3 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) |
|
Assertion |
fovrnd |
⊢ ( 𝜑 → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
fovrnd.1 |
⊢ ( 𝜑 → 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 ) |
2 |
|
fovrnd.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑅 ) |
3 |
|
fovrnd.3 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) |
4 |
|
fovrn |
⊢ ( ( 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 ) |
5 |
1 2 3 4
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 ) |