Description: An operation's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fovrnd.1 | ⊢ ( 𝜑 → 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 ) | |
Assertion | fovrnda | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fovrnd.1 | ⊢ ( 𝜑 → 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 ) | |
2 | fovrn | ⊢ ( ( 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 ) | |
3 | 1 2 | syl3an1 | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 ) |
4 | 3 | 3expb | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 ) |