Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
⊢ ( 𝐹 ∈ 𝑉 → 𝐹 ∈ V ) |
2 |
|
foeq1 |
⊢ ( 𝑧 = 𝐹 → ( 𝑧 : 𝑌 –onto→ 𝑋 ↔ 𝐹 : 𝑌 –onto→ 𝑋 ) ) |
3 |
2
|
spcegv |
⊢ ( 𝐹 ∈ V → ( 𝐹 : 𝑌 –onto→ 𝑋 → ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) |
4 |
3
|
imp |
⊢ ( ( 𝐹 ∈ V ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) |
5 |
4
|
olcd |
⊢ ( ( 𝐹 ∈ V ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) |
6 |
|
fof |
⊢ ( 𝐹 : 𝑌 –onto→ 𝑋 → 𝐹 : 𝑌 ⟶ 𝑋 ) |
7 |
|
dmfex |
⊢ ( ( 𝐹 ∈ V ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝑌 ∈ V ) |
8 |
6 7
|
sylan2 |
⊢ ( ( 𝐹 ∈ V ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → 𝑌 ∈ V ) |
9 |
|
brwdom |
⊢ ( 𝑌 ∈ V → ( 𝑋 ≼* 𝑌 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) ) |
10 |
8 9
|
syl |
⊢ ( ( 𝐹 ∈ V ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → ( 𝑋 ≼* 𝑌 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) ) |
11 |
5 10
|
mpbird |
⊢ ( ( 𝐹 ∈ V ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → 𝑋 ≼* 𝑌 ) |
12 |
1 11
|
sylan |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → 𝑋 ≼* 𝑌 ) |