| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fpar.1 |
⊢ 𝐻 = ( ( ◡ ( 1st ↾ ( V × V ) ) ∘ ( 𝐹 ∘ ( 1st ↾ ( V × V ) ) ) ) ∩ ( ◡ ( 2nd ↾ ( V × V ) ) ∘ ( 𝐺 ∘ ( 2nd ↾ ( V × V ) ) ) ) ) |
| 2 |
|
fparlem3 |
⊢ ( 𝐹 Fn 𝐴 → ( ◡ ( 1st ↾ ( V × V ) ) ∘ ( 𝐹 ∘ ( 1st ↾ ( V × V ) ) ) ) = ∪ 𝑥 ∈ 𝐴 ( ( { 𝑥 } × V ) × ( { ( 𝐹 ‘ 𝑥 ) } × V ) ) ) |
| 3 |
|
fparlem4 |
⊢ ( 𝐺 Fn 𝐵 → ( ◡ ( 2nd ↾ ( V × V ) ) ∘ ( 𝐺 ∘ ( 2nd ↾ ( V × V ) ) ) ) = ∪ 𝑦 ∈ 𝐵 ( ( V × { 𝑦 } ) × ( V × { ( 𝐺 ‘ 𝑦 ) } ) ) ) |
| 4 |
2 3
|
ineqan12d |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) → ( ( ◡ ( 1st ↾ ( V × V ) ) ∘ ( 𝐹 ∘ ( 1st ↾ ( V × V ) ) ) ) ∩ ( ◡ ( 2nd ↾ ( V × V ) ) ∘ ( 𝐺 ∘ ( 2nd ↾ ( V × V ) ) ) ) ) = ( ∪ 𝑥 ∈ 𝐴 ( ( { 𝑥 } × V ) × ( { ( 𝐹 ‘ 𝑥 ) } × V ) ) ∩ ∪ 𝑦 ∈ 𝐵 ( ( V × { 𝑦 } ) × ( V × { ( 𝐺 ‘ 𝑦 ) } ) ) ) ) |
| 5 |
|
opex |
⊢ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ∈ V |
| 6 |
5
|
dfmpo |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ) = ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 { 〈 〈 𝑥 , 𝑦 〉 , 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 〉 } |
| 7 |
|
inxp |
⊢ ( ( ( { 𝑥 } × V ) × ( { ( 𝐹 ‘ 𝑥 ) } × V ) ) ∩ ( ( V × { 𝑦 } ) × ( V × { ( 𝐺 ‘ 𝑦 ) } ) ) ) = ( ( ( { 𝑥 } × V ) ∩ ( V × { 𝑦 } ) ) × ( ( { ( 𝐹 ‘ 𝑥 ) } × V ) ∩ ( V × { ( 𝐺 ‘ 𝑦 ) } ) ) ) |
| 8 |
|
inxp |
⊢ ( ( { 𝑥 } × V ) ∩ ( V × { 𝑦 } ) ) = ( ( { 𝑥 } ∩ V ) × ( V ∩ { 𝑦 } ) ) |
| 9 |
|
inv1 |
⊢ ( { 𝑥 } ∩ V ) = { 𝑥 } |
| 10 |
|
incom |
⊢ ( V ∩ { 𝑦 } ) = ( { 𝑦 } ∩ V ) |
| 11 |
|
inv1 |
⊢ ( { 𝑦 } ∩ V ) = { 𝑦 } |
| 12 |
10 11
|
eqtri |
⊢ ( V ∩ { 𝑦 } ) = { 𝑦 } |
| 13 |
9 12
|
xpeq12i |
⊢ ( ( { 𝑥 } ∩ V ) × ( V ∩ { 𝑦 } ) ) = ( { 𝑥 } × { 𝑦 } ) |
| 14 |
|
vex |
⊢ 𝑥 ∈ V |
| 15 |
|
vex |
⊢ 𝑦 ∈ V |
| 16 |
14 15
|
xpsn |
⊢ ( { 𝑥 } × { 𝑦 } ) = { 〈 𝑥 , 𝑦 〉 } |
| 17 |
8 13 16
|
3eqtri |
⊢ ( ( { 𝑥 } × V ) ∩ ( V × { 𝑦 } ) ) = { 〈 𝑥 , 𝑦 〉 } |
| 18 |
|
inxp |
⊢ ( ( { ( 𝐹 ‘ 𝑥 ) } × V ) ∩ ( V × { ( 𝐺 ‘ 𝑦 ) } ) ) = ( ( { ( 𝐹 ‘ 𝑥 ) } ∩ V ) × ( V ∩ { ( 𝐺 ‘ 𝑦 ) } ) ) |
| 19 |
|
inv1 |
⊢ ( { ( 𝐹 ‘ 𝑥 ) } ∩ V ) = { ( 𝐹 ‘ 𝑥 ) } |
| 20 |
|
incom |
⊢ ( V ∩ { ( 𝐺 ‘ 𝑦 ) } ) = ( { ( 𝐺 ‘ 𝑦 ) } ∩ V ) |
| 21 |
|
inv1 |
⊢ ( { ( 𝐺 ‘ 𝑦 ) } ∩ V ) = { ( 𝐺 ‘ 𝑦 ) } |
| 22 |
20 21
|
eqtri |
⊢ ( V ∩ { ( 𝐺 ‘ 𝑦 ) } ) = { ( 𝐺 ‘ 𝑦 ) } |
| 23 |
19 22
|
xpeq12i |
⊢ ( ( { ( 𝐹 ‘ 𝑥 ) } ∩ V ) × ( V ∩ { ( 𝐺 ‘ 𝑦 ) } ) ) = ( { ( 𝐹 ‘ 𝑥 ) } × { ( 𝐺 ‘ 𝑦 ) } ) |
| 24 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
| 25 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑦 ) ∈ V |
| 26 |
24 25
|
xpsn |
⊢ ( { ( 𝐹 ‘ 𝑥 ) } × { ( 𝐺 ‘ 𝑦 ) } ) = { 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 } |
| 27 |
18 23 26
|
3eqtri |
⊢ ( ( { ( 𝐹 ‘ 𝑥 ) } × V ) ∩ ( V × { ( 𝐺 ‘ 𝑦 ) } ) ) = { 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 } |
| 28 |
17 27
|
xpeq12i |
⊢ ( ( ( { 𝑥 } × V ) ∩ ( V × { 𝑦 } ) ) × ( ( { ( 𝐹 ‘ 𝑥 ) } × V ) ∩ ( V × { ( 𝐺 ‘ 𝑦 ) } ) ) ) = ( { 〈 𝑥 , 𝑦 〉 } × { 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 } ) |
| 29 |
|
opex |
⊢ 〈 𝑥 , 𝑦 〉 ∈ V |
| 30 |
29 5
|
xpsn |
⊢ ( { 〈 𝑥 , 𝑦 〉 } × { 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 } ) = { 〈 〈 𝑥 , 𝑦 〉 , 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 〉 } |
| 31 |
7 28 30
|
3eqtri |
⊢ ( ( ( { 𝑥 } × V ) × ( { ( 𝐹 ‘ 𝑥 ) } × V ) ) ∩ ( ( V × { 𝑦 } ) × ( V × { ( 𝐺 ‘ 𝑦 ) } ) ) ) = { 〈 〈 𝑥 , 𝑦 〉 , 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 〉 } |
| 32 |
31
|
a1i |
⊢ ( 𝑦 ∈ 𝐵 → ( ( ( { 𝑥 } × V ) × ( { ( 𝐹 ‘ 𝑥 ) } × V ) ) ∩ ( ( V × { 𝑦 } ) × ( V × { ( 𝐺 ‘ 𝑦 ) } ) ) ) = { 〈 〈 𝑥 , 𝑦 〉 , 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 〉 } ) |
| 33 |
32
|
iuneq2i |
⊢ ∪ 𝑦 ∈ 𝐵 ( ( ( { 𝑥 } × V ) × ( { ( 𝐹 ‘ 𝑥 ) } × V ) ) ∩ ( ( V × { 𝑦 } ) × ( V × { ( 𝐺 ‘ 𝑦 ) } ) ) ) = ∪ 𝑦 ∈ 𝐵 { 〈 〈 𝑥 , 𝑦 〉 , 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 〉 } |
| 34 |
33
|
a1i |
⊢ ( 𝑥 ∈ 𝐴 → ∪ 𝑦 ∈ 𝐵 ( ( ( { 𝑥 } × V ) × ( { ( 𝐹 ‘ 𝑥 ) } × V ) ) ∩ ( ( V × { 𝑦 } ) × ( V × { ( 𝐺 ‘ 𝑦 ) } ) ) ) = ∪ 𝑦 ∈ 𝐵 { 〈 〈 𝑥 , 𝑦 〉 , 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 〉 } ) |
| 35 |
34
|
iuneq2i |
⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 ( ( ( { 𝑥 } × V ) × ( { ( 𝐹 ‘ 𝑥 ) } × V ) ) ∩ ( ( V × { 𝑦 } ) × ( V × { ( 𝐺 ‘ 𝑦 ) } ) ) ) = ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 { 〈 〈 𝑥 , 𝑦 〉 , 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 〉 } |
| 36 |
|
2iunin |
⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 ( ( ( { 𝑥 } × V ) × ( { ( 𝐹 ‘ 𝑥 ) } × V ) ) ∩ ( ( V × { 𝑦 } ) × ( V × { ( 𝐺 ‘ 𝑦 ) } ) ) ) = ( ∪ 𝑥 ∈ 𝐴 ( ( { 𝑥 } × V ) × ( { ( 𝐹 ‘ 𝑥 ) } × V ) ) ∩ ∪ 𝑦 ∈ 𝐵 ( ( V × { 𝑦 } ) × ( V × { ( 𝐺 ‘ 𝑦 ) } ) ) ) |
| 37 |
6 35 36
|
3eqtr2i |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ) = ( ∪ 𝑥 ∈ 𝐴 ( ( { 𝑥 } × V ) × ( { ( 𝐹 ‘ 𝑥 ) } × V ) ) ∩ ∪ 𝑦 ∈ 𝐵 ( ( V × { 𝑦 } ) × ( V × { ( 𝐺 ‘ 𝑦 ) } ) ) ) |
| 38 |
4 1 37
|
3eqtr4g |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) → 𝐻 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ) ) |