Metamath Proof Explorer


Theorem fparlem1

Description: Lemma for fpar . (Contributed by NM, 22-Dec-2008) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fparlem1 ( ( 1st ↾ ( V × V ) ) “ { 𝑥 } ) = ( { 𝑥 } × V )

Proof

Step Hyp Ref Expression
1 fvres ( 𝑦 ∈ ( V × V ) → ( ( 1st ↾ ( V × V ) ) ‘ 𝑦 ) = ( 1st𝑦 ) )
2 1 eqeq1d ( 𝑦 ∈ ( V × V ) → ( ( ( 1st ↾ ( V × V ) ) ‘ 𝑦 ) = 𝑥 ↔ ( 1st𝑦 ) = 𝑥 ) )
3 vex 𝑥 ∈ V
4 3 elsn2 ( ( 1st𝑦 ) ∈ { 𝑥 } ↔ ( 1st𝑦 ) = 𝑥 )
5 fvex ( 2nd𝑦 ) ∈ V
6 5 biantru ( ( 1st𝑦 ) ∈ { 𝑥 } ↔ ( ( 1st𝑦 ) ∈ { 𝑥 } ∧ ( 2nd𝑦 ) ∈ V ) )
7 4 6 bitr3i ( ( 1st𝑦 ) = 𝑥 ↔ ( ( 1st𝑦 ) ∈ { 𝑥 } ∧ ( 2nd𝑦 ) ∈ V ) )
8 2 7 bitrdi ( 𝑦 ∈ ( V × V ) → ( ( ( 1st ↾ ( V × V ) ) ‘ 𝑦 ) = 𝑥 ↔ ( ( 1st𝑦 ) ∈ { 𝑥 } ∧ ( 2nd𝑦 ) ∈ V ) ) )
9 8 pm5.32i ( ( 𝑦 ∈ ( V × V ) ∧ ( ( 1st ↾ ( V × V ) ) ‘ 𝑦 ) = 𝑥 ) ↔ ( 𝑦 ∈ ( V × V ) ∧ ( ( 1st𝑦 ) ∈ { 𝑥 } ∧ ( 2nd𝑦 ) ∈ V ) ) )
10 f1stres ( 1st ↾ ( V × V ) ) : ( V × V ) ⟶ V
11 ffn ( ( 1st ↾ ( V × V ) ) : ( V × V ) ⟶ V → ( 1st ↾ ( V × V ) ) Fn ( V × V ) )
12 fniniseg ( ( 1st ↾ ( V × V ) ) Fn ( V × V ) → ( 𝑦 ∈ ( ( 1st ↾ ( V × V ) ) “ { 𝑥 } ) ↔ ( 𝑦 ∈ ( V × V ) ∧ ( ( 1st ↾ ( V × V ) ) ‘ 𝑦 ) = 𝑥 ) ) )
13 10 11 12 mp2b ( 𝑦 ∈ ( ( 1st ↾ ( V × V ) ) “ { 𝑥 } ) ↔ ( 𝑦 ∈ ( V × V ) ∧ ( ( 1st ↾ ( V × V ) ) ‘ 𝑦 ) = 𝑥 ) )
14 elxp7 ( 𝑦 ∈ ( { 𝑥 } × V ) ↔ ( 𝑦 ∈ ( V × V ) ∧ ( ( 1st𝑦 ) ∈ { 𝑥 } ∧ ( 2nd𝑦 ) ∈ V ) ) )
15 9 13 14 3bitr4i ( 𝑦 ∈ ( ( 1st ↾ ( V × V ) ) “ { 𝑥 } ) ↔ 𝑦 ∈ ( { 𝑥 } × V ) )
16 15 eqriv ( ( 1st ↾ ( V × V ) ) “ { 𝑥 } ) = ( { 𝑥 } × V )