Step |
Hyp |
Ref |
Expression |
1 |
|
fperiodmullem.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℂ ) |
2 |
|
fperiodmullem.t |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
3 |
|
fperiodmullem.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
4 |
|
fperiodmullem.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
5 |
|
fperiodmullem.per |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
6 |
|
oveq1 |
⊢ ( 𝑛 = 0 → ( 𝑛 · 𝑇 ) = ( 0 · 𝑇 ) ) |
7 |
6
|
oveq2d |
⊢ ( 𝑛 = 0 → ( 𝑋 + ( 𝑛 · 𝑇 ) ) = ( 𝑋 + ( 0 · 𝑇 ) ) ) |
8 |
7
|
fveqeq2d |
⊢ ( 𝑛 = 0 → ( ( 𝐹 ‘ ( 𝑋 + ( 𝑛 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ ( 𝑋 + ( 0 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) ) |
9 |
8
|
imbi2d |
⊢ ( 𝑛 = 0 → ( ( 𝜑 → ( 𝐹 ‘ ( 𝑋 + ( 𝑛 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) ↔ ( 𝜑 → ( 𝐹 ‘ ( 𝑋 + ( 0 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) ) ) |
10 |
|
oveq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 · 𝑇 ) = ( 𝑚 · 𝑇 ) ) |
11 |
10
|
oveq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝑋 + ( 𝑛 · 𝑇 ) ) = ( 𝑋 + ( 𝑚 · 𝑇 ) ) ) |
12 |
11
|
fveqeq2d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ‘ ( 𝑋 + ( 𝑛 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ ( 𝑋 + ( 𝑚 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) ) |
13 |
12
|
imbi2d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝜑 → ( 𝐹 ‘ ( 𝑋 + ( 𝑛 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) ↔ ( 𝜑 → ( 𝐹 ‘ ( 𝑋 + ( 𝑚 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) ) ) |
14 |
|
oveq1 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑛 · 𝑇 ) = ( ( 𝑚 + 1 ) · 𝑇 ) ) |
15 |
14
|
oveq2d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑋 + ( 𝑛 · 𝑇 ) ) = ( 𝑋 + ( ( 𝑚 + 1 ) · 𝑇 ) ) ) |
16 |
15
|
fveqeq2d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝐹 ‘ ( 𝑋 + ( 𝑛 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ ( 𝑋 + ( ( 𝑚 + 1 ) · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) ) |
17 |
16
|
imbi2d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝜑 → ( 𝐹 ‘ ( 𝑋 + ( 𝑛 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) ↔ ( 𝜑 → ( 𝐹 ‘ ( 𝑋 + ( ( 𝑚 + 1 ) · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) ) ) |
18 |
|
oveq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 · 𝑇 ) = ( 𝑁 · 𝑇 ) ) |
19 |
18
|
oveq2d |
⊢ ( 𝑛 = 𝑁 → ( 𝑋 + ( 𝑛 · 𝑇 ) ) = ( 𝑋 + ( 𝑁 · 𝑇 ) ) ) |
20 |
19
|
fveqeq2d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝐹 ‘ ( 𝑋 + ( 𝑛 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ ( 𝑋 + ( 𝑁 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) ) |
21 |
20
|
imbi2d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝜑 → ( 𝐹 ‘ ( 𝑋 + ( 𝑛 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) ↔ ( 𝜑 → ( 𝐹 ‘ ( 𝑋 + ( 𝑁 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) ) ) |
22 |
2
|
recnd |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
23 |
22
|
mul02d |
⊢ ( 𝜑 → ( 0 · 𝑇 ) = 0 ) |
24 |
23
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 + ( 0 · 𝑇 ) ) = ( 𝑋 + 0 ) ) |
25 |
4
|
recnd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
26 |
25
|
addid1d |
⊢ ( 𝜑 → ( 𝑋 + 0 ) = 𝑋 ) |
27 |
24 26
|
eqtrd |
⊢ ( 𝜑 → ( 𝑋 + ( 0 · 𝑇 ) ) = 𝑋 ) |
28 |
27
|
fveq2d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑋 + ( 0 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) |
29 |
|
simp3 |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 → ( 𝐹 ‘ ( 𝑋 + ( 𝑚 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) ∧ 𝜑 ) → 𝜑 ) |
30 |
|
simp1 |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 → ( 𝐹 ‘ ( 𝑋 + ( 𝑚 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) ∧ 𝜑 ) → 𝑚 ∈ ℕ0 ) |
31 |
|
simpr |
⊢ ( ( ( 𝜑 → ( 𝐹 ‘ ( 𝑋 + ( 𝑚 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) ∧ 𝜑 ) → 𝜑 ) |
32 |
|
simpl |
⊢ ( ( ( 𝜑 → ( 𝐹 ‘ ( 𝑋 + ( 𝑚 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) ∧ 𝜑 ) → ( 𝜑 → ( 𝐹 ‘ ( 𝑋 + ( 𝑚 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) ) |
33 |
31 32
|
mpd |
⊢ ( ( ( 𝜑 → ( 𝐹 ‘ ( 𝑋 + ( 𝑚 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) ∧ 𝜑 ) → ( 𝐹 ‘ ( 𝑋 + ( 𝑚 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) |
34 |
33
|
3adant1 |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 → ( 𝐹 ‘ ( 𝑋 + ( 𝑚 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) ∧ 𝜑 ) → ( 𝐹 ‘ ( 𝑋 + ( 𝑚 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) |
35 |
|
nn0cn |
⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ℂ ) |
36 |
35
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ℂ ) |
37 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → 1 ∈ ℂ ) |
38 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → 𝑇 ∈ ℂ ) |
39 |
36 37 38
|
adddird |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑚 + 1 ) · 𝑇 ) = ( ( 𝑚 · 𝑇 ) + ( 1 · 𝑇 ) ) ) |
40 |
39
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑋 + ( ( 𝑚 + 1 ) · 𝑇 ) ) = ( 𝑋 + ( ( 𝑚 · 𝑇 ) + ( 1 · 𝑇 ) ) ) ) |
41 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → 𝑋 ∈ ℂ ) |
42 |
36 38
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑚 · 𝑇 ) ∈ ℂ ) |
43 |
37 38
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 1 · 𝑇 ) ∈ ℂ ) |
44 |
41 42 43
|
addassd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑋 + ( 𝑚 · 𝑇 ) ) + ( 1 · 𝑇 ) ) = ( 𝑋 + ( ( 𝑚 · 𝑇 ) + ( 1 · 𝑇 ) ) ) ) |
45 |
38
|
mulid2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 1 · 𝑇 ) = 𝑇 ) |
46 |
45
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑋 + ( 𝑚 · 𝑇 ) ) + ( 1 · 𝑇 ) ) = ( ( 𝑋 + ( 𝑚 · 𝑇 ) ) + 𝑇 ) ) |
47 |
40 44 46
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑋 + ( ( 𝑚 + 1 ) · 𝑇 ) ) = ( ( 𝑋 + ( 𝑚 · 𝑇 ) ) + 𝑇 ) ) |
48 |
47
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑋 + ( ( 𝑚 + 1 ) · 𝑇 ) ) ) = ( 𝐹 ‘ ( ( 𝑋 + ( 𝑚 · 𝑇 ) ) + 𝑇 ) ) ) |
49 |
48
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ∧ ( 𝐹 ‘ ( 𝑋 + ( 𝑚 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑋 + ( ( 𝑚 + 1 ) · 𝑇 ) ) ) = ( 𝐹 ‘ ( ( 𝑋 + ( 𝑚 · 𝑇 ) ) + 𝑇 ) ) ) |
50 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → 𝑋 ∈ ℝ ) |
51 |
|
nn0re |
⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ℝ ) |
52 |
51
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ℝ ) |
53 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → 𝑇 ∈ ℝ ) |
54 |
52 53
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑚 · 𝑇 ) ∈ ℝ ) |
55 |
50 54
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑋 + ( 𝑚 · 𝑇 ) ) ∈ ℝ ) |
56 |
55
|
ex |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ0 → ( 𝑋 + ( 𝑚 · 𝑇 ) ) ∈ ℝ ) ) |
57 |
56
|
imdistani |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝜑 ∧ ( 𝑋 + ( 𝑚 · 𝑇 ) ) ∈ ℝ ) ) |
58 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑋 + ( 𝑚 · 𝑇 ) ) → ( 𝑥 ∈ ℝ ↔ ( 𝑋 + ( 𝑚 · 𝑇 ) ) ∈ ℝ ) ) |
59 |
58
|
anbi2d |
⊢ ( 𝑥 = ( 𝑋 + ( 𝑚 · 𝑇 ) ) → ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ↔ ( 𝜑 ∧ ( 𝑋 + ( 𝑚 · 𝑇 ) ) ∈ ℝ ) ) ) |
60 |
|
fvoveq1 |
⊢ ( 𝑥 = ( 𝑋 + ( 𝑚 · 𝑇 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ ( ( 𝑋 + ( 𝑚 · 𝑇 ) ) + 𝑇 ) ) ) |
61 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑋 + ( 𝑚 · 𝑇 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑋 + ( 𝑚 · 𝑇 ) ) ) ) |
62 |
60 61
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑋 + ( 𝑚 · 𝑇 ) ) → ( ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ ( ( 𝑋 + ( 𝑚 · 𝑇 ) ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑋 + ( 𝑚 · 𝑇 ) ) ) ) ) |
63 |
59 62
|
imbi12d |
⊢ ( 𝑥 = ( 𝑋 + ( 𝑚 · 𝑇 ) ) → ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝜑 ∧ ( 𝑋 + ( 𝑚 · 𝑇 ) ) ∈ ℝ ) → ( 𝐹 ‘ ( ( 𝑋 + ( 𝑚 · 𝑇 ) ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑋 + ( 𝑚 · 𝑇 ) ) ) ) ) ) |
64 |
63 5
|
vtoclg |
⊢ ( ( 𝑋 + ( 𝑚 · 𝑇 ) ) ∈ ℝ → ( ( 𝜑 ∧ ( 𝑋 + ( 𝑚 · 𝑇 ) ) ∈ ℝ ) → ( 𝐹 ‘ ( ( 𝑋 + ( 𝑚 · 𝑇 ) ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑋 + ( 𝑚 · 𝑇 ) ) ) ) ) |
65 |
55 57 64
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝐹 ‘ ( ( 𝑋 + ( 𝑚 · 𝑇 ) ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑋 + ( 𝑚 · 𝑇 ) ) ) ) |
66 |
65
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ∧ ( 𝐹 ‘ ( 𝑋 + ( 𝑚 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) → ( 𝐹 ‘ ( ( 𝑋 + ( 𝑚 · 𝑇 ) ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑋 + ( 𝑚 · 𝑇 ) ) ) ) |
67 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ∧ ( 𝐹 ‘ ( 𝑋 + ( 𝑚 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑋 + ( 𝑚 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) |
68 |
49 66 67
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ∧ ( 𝐹 ‘ ( 𝑋 + ( 𝑚 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑋 + ( ( 𝑚 + 1 ) · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) |
69 |
29 30 34 68
|
syl3anc |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 → ( 𝐹 ‘ ( 𝑋 + ( 𝑚 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) ∧ 𝜑 ) → ( 𝐹 ‘ ( 𝑋 + ( ( 𝑚 + 1 ) · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) |
70 |
69
|
3exp |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝜑 → ( 𝐹 ‘ ( 𝑋 + ( 𝑚 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) → ( 𝜑 → ( 𝐹 ‘ ( 𝑋 + ( ( 𝑚 + 1 ) · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) ) ) |
71 |
9 13 17 21 28 70
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝜑 → ( 𝐹 ‘ ( 𝑋 + ( 𝑁 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) ) |
72 |
3 71
|
mpcom |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑋 + ( 𝑁 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) |