Step |
Hyp |
Ref |
Expression |
1 |
|
fphpdo.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
2 |
|
fphpdo.2 |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
3 |
|
fphpdo.3 |
⊢ ( 𝜑 → 𝐵 ≺ 𝐴 ) |
4 |
|
fphpdo.4 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) |
5 |
|
fphpdo.5 |
⊢ ( 𝑧 = 𝑥 → 𝐶 = 𝐷 ) |
6 |
|
fphpdo.6 |
⊢ ( 𝑧 = 𝑦 → 𝐶 = 𝐸 ) |
7 |
4
|
fmpttd |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ 𝐵 ) |
8 |
7
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐴 ) → ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) ∈ 𝐵 ) |
9 |
|
fveq2 |
⊢ ( 𝑏 = 𝑐 → ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) ) |
10 |
3 8 9
|
fphpd |
⊢ ( 𝜑 → ∃ 𝑏 ∈ 𝐴 ∃ 𝑐 ∈ 𝐴 ( 𝑏 ≠ 𝑐 ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) ) ) |
11 |
1
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐴 ) → 𝑏 ∈ ℝ ) |
12 |
11
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) → 𝑏 ∈ ℝ ) |
13 |
12
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) ) → 𝑏 ∈ ℝ ) |
14 |
1
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝑐 ∈ ℝ ) |
15 |
14
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) → 𝑐 ∈ ℝ ) |
16 |
15
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) ) → 𝑐 ∈ ℝ ) |
17 |
13 16
|
lttri2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) ) → ( 𝑏 ≠ 𝑐 ↔ ( 𝑏 < 𝑐 ∨ 𝑐 < 𝑏 ) ) ) |
18 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) → 𝑏 ∈ 𝐴 ) |
19 |
18
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) ) ∧ 𝑏 < 𝑐 ) → 𝑏 ∈ 𝐴 ) |
20 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) → 𝑐 ∈ 𝐴 ) |
21 |
20
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) ) ∧ 𝑏 < 𝑐 ) → 𝑐 ∈ 𝐴 ) |
22 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) ) ∧ 𝑏 < 𝑐 ) → 𝑏 < 𝑐 ) |
23 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) ) ∧ 𝑏 < 𝑐 ) → ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) ) |
24 |
|
breq1 |
⊢ ( 𝑥 = 𝑏 → ( 𝑥 < 𝑦 ↔ 𝑏 < 𝑦 ) ) |
25 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑏 → ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ↔ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) ) |
26 |
24 25
|
anbi12d |
⊢ ( 𝑥 = 𝑏 → ( ( 𝑥 < 𝑦 ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) ↔ ( 𝑏 < 𝑦 ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) ) ) |
27 |
|
breq2 |
⊢ ( 𝑦 = 𝑐 → ( 𝑏 < 𝑦 ↔ 𝑏 < 𝑐 ) ) |
28 |
|
fveq2 |
⊢ ( 𝑦 = 𝑐 → ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) ) |
29 |
28
|
eqeq2d |
⊢ ( 𝑦 = 𝑐 → ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ↔ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) ) ) |
30 |
27 29
|
anbi12d |
⊢ ( 𝑦 = 𝑐 → ( ( 𝑏 < 𝑦 ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) ↔ ( 𝑏 < 𝑐 ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) ) ) ) |
31 |
26 30
|
rspc2ev |
⊢ ( ( 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ∧ ( 𝑏 < 𝑐 ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) ) ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( 𝑥 < 𝑦 ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) ) |
32 |
19 21 22 23 31
|
syl112anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) ) ∧ 𝑏 < 𝑐 ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( 𝑥 < 𝑦 ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) ) |
33 |
32
|
ex |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) ) → ( 𝑏 < 𝑐 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( 𝑥 < 𝑦 ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) ) ) |
34 |
20
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) ) ∧ 𝑐 < 𝑏 ) → 𝑐 ∈ 𝐴 ) |
35 |
18
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) ) ∧ 𝑐 < 𝑏 ) → 𝑏 ∈ 𝐴 ) |
36 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) ) ∧ 𝑐 < 𝑏 ) → 𝑐 < 𝑏 ) |
37 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) ) ∧ 𝑐 < 𝑏 ) → ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) ) |
38 |
37
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) ) ∧ 𝑐 < 𝑏 ) → ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) ) |
39 |
|
breq1 |
⊢ ( 𝑥 = 𝑐 → ( 𝑥 < 𝑦 ↔ 𝑐 < 𝑦 ) ) |
40 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑐 → ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ↔ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) ) |
41 |
39 40
|
anbi12d |
⊢ ( 𝑥 = 𝑐 → ( ( 𝑥 < 𝑦 ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) ↔ ( 𝑐 < 𝑦 ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) ) ) |
42 |
|
breq2 |
⊢ ( 𝑦 = 𝑏 → ( 𝑐 < 𝑦 ↔ 𝑐 < 𝑏 ) ) |
43 |
|
fveq2 |
⊢ ( 𝑦 = 𝑏 → ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) ) |
44 |
43
|
eqeq2d |
⊢ ( 𝑦 = 𝑏 → ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ↔ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) ) ) |
45 |
42 44
|
anbi12d |
⊢ ( 𝑦 = 𝑏 → ( ( 𝑐 < 𝑦 ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) ↔ ( 𝑐 < 𝑏 ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) ) ) ) |
46 |
41 45
|
rspc2ev |
⊢ ( ( 𝑐 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ ( 𝑐 < 𝑏 ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) ) ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( 𝑥 < 𝑦 ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) ) |
47 |
34 35 36 38 46
|
syl112anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) ) ∧ 𝑐 < 𝑏 ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( 𝑥 < 𝑦 ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) ) |
48 |
47
|
ex |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) ) → ( 𝑐 < 𝑏 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( 𝑥 < 𝑦 ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) ) ) |
49 |
33 48
|
jaod |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) ) → ( ( 𝑏 < 𝑐 ∨ 𝑐 < 𝑏 ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( 𝑥 < 𝑦 ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) ) ) |
50 |
|
eqid |
⊢ ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) |
51 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
52 |
|
eleq1w |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) |
53 |
52
|
anbi2d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ) ) |
54 |
5
|
eleq1d |
⊢ ( 𝑧 = 𝑥 → ( 𝐶 ∈ 𝐵 ↔ 𝐷 ∈ 𝐵 ) ) |
55 |
53 54
|
imbi12d |
⊢ ( 𝑧 = 𝑥 → ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐷 ∈ 𝐵 ) ) ) |
56 |
55 4
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐷 ∈ 𝐵 ) |
57 |
56
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝐷 ∈ 𝐵 ) |
58 |
50 5 51 57
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐷 ) |
59 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
60 |
|
eleq1w |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
61 |
60
|
anbi2d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ) ) |
62 |
6
|
eleq1d |
⊢ ( 𝑧 = 𝑦 → ( 𝐶 ∈ 𝐵 ↔ 𝐸 ∈ 𝐵 ) ) |
63 |
61 62
|
imbi12d |
⊢ ( 𝑧 = 𝑦 → ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝐸 ∈ 𝐵 ) ) ) |
64 |
63 4
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝐸 ∈ 𝐵 ) |
65 |
64
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝐸 ∈ 𝐵 ) |
66 |
50 6 59 65
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐸 ) |
67 |
58 66
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ↔ 𝐷 = 𝐸 ) ) |
68 |
67
|
biimpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) → 𝐷 = 𝐸 ) ) |
69 |
68
|
anim2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 < 𝑦 ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) → ( 𝑥 < 𝑦 ∧ 𝐷 = 𝐸 ) ) ) |
70 |
69
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 < 𝑦 ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) → ∃ 𝑦 ∈ 𝐴 ( 𝑥 < 𝑦 ∧ 𝐷 = 𝐸 ) ) ) |
71 |
70
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( 𝑥 < 𝑦 ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( 𝑥 < 𝑦 ∧ 𝐷 = 𝐸 ) ) ) |
72 |
71
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) ) → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( 𝑥 < 𝑦 ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( 𝑥 < 𝑦 ∧ 𝐷 = 𝐸 ) ) ) |
73 |
49 72
|
syld |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) ) → ( ( 𝑏 < 𝑐 ∨ 𝑐 < 𝑏 ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( 𝑥 < 𝑦 ∧ 𝐷 = 𝐸 ) ) ) |
74 |
17 73
|
sylbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) ) → ( 𝑏 ≠ 𝑐 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( 𝑥 < 𝑦 ∧ 𝐷 = 𝐸 ) ) ) |
75 |
74
|
expimpd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) → ( ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) ∧ 𝑏 ≠ 𝑐 ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( 𝑥 < 𝑦 ∧ 𝐷 = 𝐸 ) ) ) |
76 |
75
|
ancomsd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) → ( ( 𝑏 ≠ 𝑐 ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( 𝑥 < 𝑦 ∧ 𝐷 = 𝐸 ) ) ) |
77 |
76
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑏 ∈ 𝐴 ∃ 𝑐 ∈ 𝐴 ( 𝑏 ≠ 𝑐 ∧ ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑐 ) ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( 𝑥 < 𝑦 ∧ 𝐷 = 𝐸 ) ) ) |
78 |
10 77
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( 𝑥 < 𝑦 ∧ 𝐷 = 𝐸 ) ) |