Metamath Proof Explorer
Theorem fpm
Description: A total function is a partial function. (Contributed by NM, 15-Nov-2007) (Revised by Mario Carneiro, 31-Dec-2013)
|
|
Ref |
Expression |
|
Hypotheses |
elmap.1 |
⊢ 𝐴 ∈ V |
|
|
elmap.2 |
⊢ 𝐵 ∈ V |
|
Assertion |
fpm |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 ∈ ( 𝐵 ↑pm 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
elmap.1 |
⊢ 𝐴 ∈ V |
2 |
|
elmap.2 |
⊢ 𝐵 ∈ V |
3 |
|
fpmg |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝐹 ∈ ( 𝐵 ↑pm 𝐴 ) ) |
4 |
1 2 3
|
mp3an12 |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 ∈ ( 𝐵 ↑pm 𝐴 ) ) |