Metamath Proof Explorer


Theorem fpmd

Description: A total function is a partial function. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses fpmd.a ( 𝜑𝐴𝑉 )
fpmd.b ( 𝜑𝐵𝑊 )
fpmd.c ( 𝜑𝐶𝐴 )
fpmd.f ( 𝜑𝐹 : 𝐶𝐵 )
Assertion fpmd ( 𝜑𝐹 ∈ ( 𝐵pm 𝐴 ) )

Proof

Step Hyp Ref Expression
1 fpmd.a ( 𝜑𝐴𝑉 )
2 fpmd.b ( 𝜑𝐵𝑊 )
3 fpmd.c ( 𝜑𝐶𝐴 )
4 fpmd.f ( 𝜑𝐹 : 𝐶𝐵 )
5 elpm2r ( ( ( 𝐵𝑊𝐴𝑉 ) ∧ ( 𝐹 : 𝐶𝐵𝐶𝐴 ) ) → 𝐹 ∈ ( 𝐵pm 𝐴 ) )
6 2 1 4 3 5 syl22anc ( 𝜑𝐹 ∈ ( 𝐵pm 𝐴 ) )