Metamath Proof Explorer
Description: A total function is a partial function. (Contributed by Glauco
Siliprandi, 5-Feb-2022)
|
|
Ref |
Expression |
|
Hypotheses |
fpmd.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
|
|
fpmd.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
|
|
fpmd.c |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) |
|
|
fpmd.f |
⊢ ( 𝜑 → 𝐹 : 𝐶 ⟶ 𝐵 ) |
|
Assertion |
fpmd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐵 ↑pm 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
fpmd.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
fpmd.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
3 |
|
fpmd.c |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) |
4 |
|
fpmd.f |
⊢ ( 𝜑 → 𝐹 : 𝐶 ⟶ 𝐵 ) |
5 |
|
elpm2r |
⊢ ( ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐹 : 𝐶 ⟶ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) ) → 𝐹 ∈ ( 𝐵 ↑pm 𝐴 ) ) |
6 |
2 1 4 3 5
|
syl22anc |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐵 ↑pm 𝐴 ) ) |