Metamath Proof Explorer


Theorem fpmg

Description: A total function is a partial function. (Contributed by Mario Carneiro, 31-Dec-2013)

Ref Expression
Assertion fpmg ( ( 𝐴𝑉𝐵𝑊𝐹 : 𝐴𝐵 ) → 𝐹 ∈ ( 𝐵pm 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ssid 𝐴𝐴
2 elpm2r ( ( ( 𝐵𝑊𝐴𝑉 ) ∧ ( 𝐹 : 𝐴𝐵𝐴𝐴 ) ) → 𝐹 ∈ ( 𝐵pm 𝐴 ) )
3 1 2 mpanr2 ( ( ( 𝐵𝑊𝐴𝑉 ) ∧ 𝐹 : 𝐴𝐵 ) → 𝐹 ∈ ( 𝐵pm 𝐴 ) )
4 3 3impa ( ( 𝐵𝑊𝐴𝑉𝐹 : 𝐴𝐵 ) → 𝐹 ∈ ( 𝐵pm 𝐴 ) )
5 4 3com12 ( ( 𝐴𝑉𝐵𝑊𝐹 : 𝐴𝐵 ) → 𝐹 ∈ ( 𝐵pm 𝐴 ) )