Description: A total function is a partial function. (Contributed by Mario Carneiro, 31-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | fpmg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝐹 ∈ ( 𝐵 ↑pm 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid | ⊢ 𝐴 ⊆ 𝐴 | |
2 | elpm2r | ⊢ ( ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝐴 ) ) → 𝐹 ∈ ( 𝐵 ↑pm 𝐴 ) ) | |
3 | 1 2 | mpanr2 | ⊢ ( ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝐹 ∈ ( 𝐵 ↑pm 𝐴 ) ) |
4 | 3 | 3impa | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝐹 ∈ ( 𝐵 ↑pm 𝐴 ) ) |
5 | 4 | 3com12 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝐹 ∈ ( 𝐵 ↑pm 𝐴 ) ) |