| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprod0.kph | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | fprod0.kc | ⊢ Ⅎ 𝑘 𝐶 | 
						
							| 3 |  | fprod0.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 4 |  | fprod0.b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 5 |  | fprod0.bc | ⊢ ( 𝑘  =  𝐾  →  𝐵  =  𝐶 ) | 
						
							| 6 |  | fprod0.k | ⊢ ( 𝜑  →  𝐾  ∈  𝐴 ) | 
						
							| 7 |  | fprod0.c | ⊢ ( 𝜑  →  𝐶  =  0 ) | 
						
							| 8 | 2 | a1i | ⊢ ( 𝜑  →  Ⅎ 𝑘 𝐶 ) | 
						
							| 9 | 5 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  =  𝐾 )  →  𝐵  =  𝐶 ) | 
						
							| 10 | 1 8 3 4 6 9 | fprodsplit1f | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝐴 𝐵  =  ( 𝐶  ·  ∏ 𝑘  ∈  ( 𝐴  ∖  { 𝐾 } ) 𝐵 ) ) | 
						
							| 11 | 7 | oveq1d | ⊢ ( 𝜑  →  ( 𝐶  ·  ∏ 𝑘  ∈  ( 𝐴  ∖  { 𝐾 } ) 𝐵 )  =  ( 0  ·  ∏ 𝑘  ∈  ( 𝐴  ∖  { 𝐾 } ) 𝐵 ) ) | 
						
							| 12 |  | diffi | ⊢ ( 𝐴  ∈  Fin  →  ( 𝐴  ∖  { 𝐾 } )  ∈  Fin ) | 
						
							| 13 | 3 12 | syl | ⊢ ( 𝜑  →  ( 𝐴  ∖  { 𝐾 } )  ∈  Fin ) | 
						
							| 14 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∖  { 𝐾 } ) )  →  𝜑 ) | 
						
							| 15 |  | eldifi | ⊢ ( 𝑘  ∈  ( 𝐴  ∖  { 𝐾 } )  →  𝑘  ∈  𝐴 ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∖  { 𝐾 } ) )  →  𝑘  ∈  𝐴 ) | 
						
							| 17 | 14 16 4 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∖  { 𝐾 } ) )  →  𝐵  ∈  ℂ ) | 
						
							| 18 | 1 13 17 | fprodclf | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( 𝐴  ∖  { 𝐾 } ) 𝐵  ∈  ℂ ) | 
						
							| 19 | 18 | mul02d | ⊢ ( 𝜑  →  ( 0  ·  ∏ 𝑘  ∈  ( 𝐴  ∖  { 𝐾 } ) 𝐵 )  =  0 ) | 
						
							| 20 | 10 11 19 | 3eqtrd | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝐴 𝐵  =  0 ) |