Step |
Hyp |
Ref |
Expression |
1 |
|
fprod0.kph |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
fprod0.kc |
⊢ Ⅎ 𝑘 𝐶 |
3 |
|
fprod0.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
4 |
|
fprod0.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
5 |
|
fprod0.bc |
⊢ ( 𝑘 = 𝐾 → 𝐵 = 𝐶 ) |
6 |
|
fprod0.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝐴 ) |
7 |
|
fprod0.c |
⊢ ( 𝜑 → 𝐶 = 0 ) |
8 |
2
|
a1i |
⊢ ( 𝜑 → Ⅎ 𝑘 𝐶 ) |
9 |
5
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐾 ) → 𝐵 = 𝐶 ) |
10 |
1 8 3 4 6 9
|
fprodsplit1f |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 = ( 𝐶 · ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝐾 } ) 𝐵 ) ) |
11 |
7
|
oveq1d |
⊢ ( 𝜑 → ( 𝐶 · ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝐾 } ) 𝐵 ) = ( 0 · ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝐾 } ) 𝐵 ) ) |
12 |
|
diffi |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 ∖ { 𝐾 } ) ∈ Fin ) |
13 |
3 12
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∖ { 𝐾 } ) ∈ Fin ) |
14 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝐾 } ) ) → 𝜑 ) |
15 |
|
eldifi |
⊢ ( 𝑘 ∈ ( 𝐴 ∖ { 𝐾 } ) → 𝑘 ∈ 𝐴 ) |
16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝐾 } ) ) → 𝑘 ∈ 𝐴 ) |
17 |
14 16 4
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝐾 } ) ) → 𝐵 ∈ ℂ ) |
18 |
1 13 17
|
fprodclf |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝐾 } ) 𝐵 ∈ ℂ ) |
19 |
18
|
mul02d |
⊢ ( 𝜑 → ( 0 · ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝐾 } ) 𝐵 ) = 0 ) |
20 |
10 11 19
|
3eqtrd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 = 0 ) |