Metamath Proof Explorer


Theorem fprod1

Description: A finite product of only one term is the term itself. (Contributed by Scott Fenton, 14-Dec-2017)

Ref Expression
Hypothesis prodsn.1 ( 𝑘 = 𝑀𝐴 = 𝐵 )
Assertion fprod1 ( ( 𝑀 ∈ ℤ ∧ 𝐵 ∈ ℂ ) → ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 prodsn.1 ( 𝑘 = 𝑀𝐴 = 𝐵 )
2 fzsn ( 𝑀 ∈ ℤ → ( 𝑀 ... 𝑀 ) = { 𝑀 } )
3 2 prodeq1d ( 𝑀 ∈ ℤ → ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 = ∏ 𝑘 ∈ { 𝑀 } 𝐴 )
4 3 adantr ( ( 𝑀 ∈ ℤ ∧ 𝐵 ∈ ℂ ) → ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 = ∏ 𝑘 ∈ { 𝑀 } 𝐴 )
5 1 prodsn ( ( 𝑀 ∈ ℤ ∧ 𝐵 ∈ ℂ ) → ∏ 𝑘 ∈ { 𝑀 } 𝐴 = 𝐵 )
6 4 5 eqtrd ( ( 𝑀 ∈ ℤ ∧ 𝐵 ∈ ℂ ) → ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 = 𝐵 )