Description: A finite product of only one term is the term itself. (Contributed by Scott Fenton, 14-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | prodsn.1 | ⊢ ( 𝑘 = 𝑀 → 𝐴 = 𝐵 ) | |
| Assertion | fprod1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐵 ∈ ℂ ) → ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodsn.1 | ⊢ ( 𝑘 = 𝑀 → 𝐴 = 𝐵 ) | |
| 2 | fzsn | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) | |
| 3 | 2 | prodeq1d | ⊢ ( 𝑀 ∈ ℤ → ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 = ∏ 𝑘 ∈ { 𝑀 } 𝐴 ) |
| 4 | 3 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐵 ∈ ℂ ) → ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 = ∏ 𝑘 ∈ { 𝑀 } 𝐴 ) |
| 5 | 1 | prodsn | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐵 ∈ ℂ ) → ∏ 𝑘 ∈ { 𝑀 } 𝐴 = 𝐵 ) |
| 6 | 4 5 | eqtrd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐵 ∈ ℂ ) → ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 = 𝐵 ) |