| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprod1p.1 | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 2 |  | fprod1p.2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 3 |  | fprod1p.3 | ⊢ ( 𝑘  =  𝑀  →  𝐴  =  𝐵 ) | 
						
							| 4 |  | eluzfz1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 5 | 1 4 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 6 | 5 | elfzelzd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 7 |  | fzsn | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑀 ... 𝑀 )  =  { 𝑀 } ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝜑  →  ( 𝑀 ... 𝑀 )  =  { 𝑀 } ) | 
						
							| 9 | 8 | ineq1d | ⊢ ( 𝜑  →  ( ( 𝑀 ... 𝑀 )  ∩  ( ( 𝑀  +  1 ) ... 𝑁 ) )  =  ( { 𝑀 }  ∩  ( ( 𝑀  +  1 ) ... 𝑁 ) ) ) | 
						
							| 10 | 6 | zred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 11 | 10 | ltp1d | ⊢ ( 𝜑  →  𝑀  <  ( 𝑀  +  1 ) ) | 
						
							| 12 |  | fzdisj | ⊢ ( 𝑀  <  ( 𝑀  +  1 )  →  ( ( 𝑀 ... 𝑀 )  ∩  ( ( 𝑀  +  1 ) ... 𝑁 ) )  =  ∅ ) | 
						
							| 13 | 11 12 | syl | ⊢ ( 𝜑  →  ( ( 𝑀 ... 𝑀 )  ∩  ( ( 𝑀  +  1 ) ... 𝑁 ) )  =  ∅ ) | 
						
							| 14 | 9 13 | eqtr3d | ⊢ ( 𝜑  →  ( { 𝑀 }  ∩  ( ( 𝑀  +  1 ) ... 𝑁 ) )  =  ∅ ) | 
						
							| 15 |  | fzsplit | ⊢ ( 𝑀  ∈  ( 𝑀 ... 𝑁 )  →  ( 𝑀 ... 𝑁 )  =  ( ( 𝑀 ... 𝑀 )  ∪  ( ( 𝑀  +  1 ) ... 𝑁 ) ) ) | 
						
							| 16 | 5 15 | syl | ⊢ ( 𝜑  →  ( 𝑀 ... 𝑁 )  =  ( ( 𝑀 ... 𝑀 )  ∪  ( ( 𝑀  +  1 ) ... 𝑁 ) ) ) | 
						
							| 17 | 8 | uneq1d | ⊢ ( 𝜑  →  ( ( 𝑀 ... 𝑀 )  ∪  ( ( 𝑀  +  1 ) ... 𝑁 ) )  =  ( { 𝑀 }  ∪  ( ( 𝑀  +  1 ) ... 𝑁 ) ) ) | 
						
							| 18 | 16 17 | eqtrd | ⊢ ( 𝜑  →  ( 𝑀 ... 𝑁 )  =  ( { 𝑀 }  ∪  ( ( 𝑀  +  1 ) ... 𝑁 ) ) ) | 
						
							| 19 |  | fzfid | ⊢ ( 𝜑  →  ( 𝑀 ... 𝑁 )  ∈  Fin ) | 
						
							| 20 | 14 18 19 2 | fprodsplit | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( 𝑀 ... 𝑁 ) 𝐴  =  ( ∏ 𝑘  ∈  { 𝑀 } 𝐴  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) 𝐴 ) ) | 
						
							| 21 | 3 | eleq1d | ⊢ ( 𝑘  =  𝑀  →  ( 𝐴  ∈  ℂ  ↔  𝐵  ∈  ℂ ) ) | 
						
							| 22 | 2 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) 𝐴  ∈  ℂ ) | 
						
							| 23 | 21 22 5 | rspcdva | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 24 | 3 | prodsn | ⊢ ( ( 𝑀  ∈  ( 𝑀 ... 𝑁 )  ∧  𝐵  ∈  ℂ )  →  ∏ 𝑘  ∈  { 𝑀 } 𝐴  =  𝐵 ) | 
						
							| 25 | 5 23 24 | syl2anc | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  { 𝑀 } 𝐴  =  𝐵 ) | 
						
							| 26 | 25 | oveq1d | ⊢ ( 𝜑  →  ( ∏ 𝑘  ∈  { 𝑀 } 𝐴  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) 𝐴 )  =  ( 𝐵  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) 𝐴 ) ) | 
						
							| 27 | 20 26 | eqtrd | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( 𝑀 ... 𝑁 ) 𝐴  =  ( 𝐵  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) 𝐴 ) ) |