Step |
Hyp |
Ref |
Expression |
1 |
|
fprod1p.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
2 |
|
fprod1p.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) |
3 |
|
fprod1p.3 |
⊢ ( 𝑘 = 𝑀 → 𝐴 = 𝐵 ) |
4 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
5 |
1 4
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
6 |
5
|
elfzelzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
7 |
|
fzsn |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) |
8 |
6 7
|
syl |
⊢ ( 𝜑 → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) |
9 |
8
|
ineq1d |
⊢ ( 𝜑 → ( ( 𝑀 ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ( { 𝑀 } ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
10 |
6
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
11 |
10
|
ltp1d |
⊢ ( 𝜑 → 𝑀 < ( 𝑀 + 1 ) ) |
12 |
|
fzdisj |
⊢ ( 𝑀 < ( 𝑀 + 1 ) → ( ( 𝑀 ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ∅ ) |
13 |
11 12
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ∅ ) |
14 |
9 13
|
eqtr3d |
⊢ ( 𝜑 → ( { 𝑀 } ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ∅ ) |
15 |
|
fzsplit |
⊢ ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
16 |
5 15
|
syl |
⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
17 |
8
|
uneq1d |
⊢ ( 𝜑 → ( ( 𝑀 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
18 |
16 17
|
eqtrd |
⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) = ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
19 |
|
fzfid |
⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ∈ Fin ) |
20 |
14 18 19 2
|
fprodsplit |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = ( ∏ 𝑘 ∈ { 𝑀 } 𝐴 · ∏ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 ) ) |
21 |
3
|
eleq1d |
⊢ ( 𝑘 = 𝑀 → ( 𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ ) ) |
22 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ∈ ℂ ) |
23 |
21 22 5
|
rspcdva |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
24 |
3
|
prodsn |
⊢ ( ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝐵 ∈ ℂ ) → ∏ 𝑘 ∈ { 𝑀 } 𝐴 = 𝐵 ) |
25 |
5 23 24
|
syl2anc |
⊢ ( 𝜑 → ∏ 𝑘 ∈ { 𝑀 } 𝐴 = 𝐵 ) |
26 |
25
|
oveq1d |
⊢ ( 𝜑 → ( ∏ 𝑘 ∈ { 𝑀 } 𝐴 · ∏ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 ) = ( 𝐵 · ∏ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 ) ) |
27 |
20 26
|
eqtrd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = ( 𝐵 · ∏ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 ) ) |