Step |
Hyp |
Ref |
Expression |
1 |
|
fprod2d.1 |
⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → 𝐷 = 𝐶 ) |
2 |
|
fprod2d.2 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
3 |
|
fprod2d.3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐵 ∈ Fin ) |
4 |
|
fprod2d.4 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐶 ∈ ℂ ) |
5 |
|
fprod2d.5 |
⊢ ( 𝜑 → ¬ 𝑦 ∈ 𝑥 ) |
6 |
|
fprod2d.6 |
⊢ ( 𝜑 → ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) |
7 |
|
fprod2d.7 |
⊢ ( 𝜓 ↔ ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) |
8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜓 ) |
9 |
8 7
|
sylib |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) |
10 |
|
nfcv |
⊢ Ⅎ 𝑚 ∏ 𝑘 ∈ 𝐵 𝐶 |
11 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ 𝑚 / 𝑗 ⦌ 𝐵 |
12 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ 𝑚 / 𝑗 ⦌ 𝐶 |
13 |
11 12
|
nfcprod |
⊢ Ⅎ 𝑗 ∏ 𝑘 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ⦋ 𝑚 / 𝑗 ⦌ 𝐶 |
14 |
|
csbeq1a |
⊢ ( 𝑗 = 𝑚 → 𝐵 = ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ) |
15 |
|
csbeq1a |
⊢ ( 𝑗 = 𝑚 → 𝐶 = ⦋ 𝑚 / 𝑗 ⦌ 𝐶 ) |
16 |
15
|
adantr |
⊢ ( ( 𝑗 = 𝑚 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 = ⦋ 𝑚 / 𝑗 ⦌ 𝐶 ) |
17 |
14 16
|
prodeq12dv |
⊢ ( 𝑗 = 𝑚 → ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑘 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ⦋ 𝑚 / 𝑗 ⦌ 𝐶 ) |
18 |
10 13 17
|
cbvprodi |
⊢ ∏ 𝑗 ∈ { 𝑦 } ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑚 ∈ { 𝑦 } ∏ 𝑘 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ⦋ 𝑚 / 𝑗 ⦌ 𝐶 |
19 |
6
|
unssbd |
⊢ ( 𝜑 → { 𝑦 } ⊆ 𝐴 ) |
20 |
|
vex |
⊢ 𝑦 ∈ V |
21 |
20
|
snss |
⊢ ( 𝑦 ∈ 𝐴 ↔ { 𝑦 } ⊆ 𝐴 ) |
22 |
19 21
|
sylibr |
⊢ ( 𝜑 → 𝑦 ∈ 𝐴 ) |
23 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝐴 𝐵 ∈ Fin ) |
24 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ 𝑦 / 𝑗 ⦌ 𝐵 |
25 |
24
|
nfel1 |
⊢ Ⅎ 𝑗 ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ∈ Fin |
26 |
|
csbeq1a |
⊢ ( 𝑗 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) |
27 |
26
|
eleq1d |
⊢ ( 𝑗 = 𝑦 → ( 𝐵 ∈ Fin ↔ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ∈ Fin ) ) |
28 |
25 27
|
rspc |
⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑗 ∈ 𝐴 𝐵 ∈ Fin → ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ∈ Fin ) ) |
29 |
22 23 28
|
sylc |
⊢ ( 𝜑 → ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ∈ Fin ) |
30 |
4
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ ) |
31 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ 𝑦 / 𝑗 ⦌ 𝐶 |
32 |
31
|
nfel1 |
⊢ Ⅎ 𝑗 ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ∈ ℂ |
33 |
24 32
|
nfralw |
⊢ Ⅎ 𝑗 ∀ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ∈ ℂ |
34 |
|
csbeq1a |
⊢ ( 𝑗 = 𝑦 → 𝐶 = ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) |
35 |
34
|
eleq1d |
⊢ ( 𝑗 = 𝑦 → ( 𝐶 ∈ ℂ ↔ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ∈ ℂ ) ) |
36 |
26 35
|
raleqbidv |
⊢ ( 𝑗 = 𝑦 → ( ∀ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ ↔ ∀ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ∈ ℂ ) ) |
37 |
33 36
|
rspc |
⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ → ∀ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ∈ ℂ ) ) |
38 |
22 30 37
|
sylc |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ∈ ℂ ) |
39 |
38
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) → ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ∈ ℂ ) |
40 |
29 39
|
fprodcl |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ∈ ℂ ) |
41 |
|
csbeq1 |
⊢ ( 𝑚 = 𝑦 → ⦋ 𝑚 / 𝑗 ⦌ 𝐵 = ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) |
42 |
|
csbeq1 |
⊢ ( 𝑚 = 𝑦 → ⦋ 𝑚 / 𝑗 ⦌ 𝐶 = ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) |
43 |
42
|
adantr |
⊢ ( ( 𝑚 = 𝑦 ∧ 𝑘 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ) → ⦋ 𝑚 / 𝑗 ⦌ 𝐶 = ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) |
44 |
41 43
|
prodeq12dv |
⊢ ( 𝑚 = 𝑦 → ∏ 𝑘 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ⦋ 𝑚 / 𝑗 ⦌ 𝐶 = ∏ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) |
45 |
44
|
prodsn |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ∏ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ∈ ℂ ) → ∏ 𝑚 ∈ { 𝑦 } ∏ 𝑘 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ⦋ 𝑚 / 𝑗 ⦌ 𝐶 = ∏ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) |
46 |
22 40 45
|
syl2anc |
⊢ ( 𝜑 → ∏ 𝑚 ∈ { 𝑦 } ∏ 𝑘 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ⦋ 𝑚 / 𝑗 ⦌ 𝐶 = ∏ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) |
47 |
|
nfcv |
⊢ Ⅎ 𝑚 ⦋ 𝑦 / 𝑗 ⦌ 𝐶 |
48 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 |
49 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑚 → ⦋ 𝑦 / 𝑗 ⦌ 𝐶 = ⦋ 𝑚 / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) |
50 |
47 48 49
|
cbvprodi |
⊢ ∏ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑗 ⦌ 𝐶 = ∏ 𝑚 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ⦋ 𝑚 / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 |
51 |
|
csbeq1 |
⊢ ( 𝑚 = ( 2nd ‘ 𝑧 ) → ⦋ 𝑚 / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 = ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) |
52 |
|
snfi |
⊢ { 𝑦 } ∈ Fin |
53 |
|
xpfi |
⊢ ( ( { 𝑦 } ∈ Fin ∧ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ∈ Fin ) → ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ∈ Fin ) |
54 |
52 29 53
|
sylancr |
⊢ ( 𝜑 → ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ∈ Fin ) |
55 |
|
2ndconst |
⊢ ( 𝑦 ∈ 𝐴 → ( 2nd ↾ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) : ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) –1-1-onto→ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) |
56 |
22 55
|
syl |
⊢ ( 𝜑 → ( 2nd ↾ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) : ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) –1-1-onto→ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) |
57 |
|
fvres |
⊢ ( 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) → ( ( 2nd ↾ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) ‘ 𝑧 ) = ( 2nd ‘ 𝑧 ) ) |
58 |
57
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) → ( ( 2nd ↾ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) ‘ 𝑧 ) = ( 2nd ‘ 𝑧 ) ) |
59 |
48
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ∈ ℂ |
60 |
49
|
eleq1d |
⊢ ( 𝑘 = 𝑚 → ( ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ∈ ℂ ↔ ⦋ 𝑚 / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ∈ ℂ ) ) |
61 |
59 60
|
rspc |
⊢ ( 𝑚 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 → ( ∀ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ∈ ℂ → ⦋ 𝑚 / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ∈ ℂ ) ) |
62 |
38 61
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) → ⦋ 𝑚 / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ∈ ℂ ) |
63 |
51 54 56 58 62
|
fprodf1o |
⊢ ( 𝜑 → ∏ 𝑚 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ⦋ 𝑚 / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 = ∏ 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) |
64 |
|
elxp |
⊢ ( 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ↔ ∃ 𝑚 ∃ 𝑘 ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) ) |
65 |
|
nfv |
⊢ Ⅎ 𝑗 𝑧 = 〈 𝑚 , 𝑘 〉 |
66 |
|
nfv |
⊢ Ⅎ 𝑗 𝑚 ∈ { 𝑦 } |
67 |
24
|
nfcri |
⊢ Ⅎ 𝑗 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 |
68 |
66 67
|
nfan |
⊢ Ⅎ 𝑗 ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) |
69 |
65 68
|
nfan |
⊢ Ⅎ 𝑗 ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) |
70 |
69
|
nfex |
⊢ Ⅎ 𝑗 ∃ 𝑘 ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) |
71 |
|
nfv |
⊢ Ⅎ 𝑚 ∃ 𝑘 ( 𝑧 = 〈 𝑗 , 𝑘 〉 ∧ ( 𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵 ) ) |
72 |
|
opeq1 |
⊢ ( 𝑚 = 𝑗 → 〈 𝑚 , 𝑘 〉 = 〈 𝑗 , 𝑘 〉 ) |
73 |
72
|
eqeq2d |
⊢ ( 𝑚 = 𝑗 → ( 𝑧 = 〈 𝑚 , 𝑘 〉 ↔ 𝑧 = 〈 𝑗 , 𝑘 〉 ) ) |
74 |
|
eleq1w |
⊢ ( 𝑚 = 𝑗 → ( 𝑚 ∈ { 𝑦 } ↔ 𝑗 ∈ { 𝑦 } ) ) |
75 |
|
velsn |
⊢ ( 𝑗 ∈ { 𝑦 } ↔ 𝑗 = 𝑦 ) |
76 |
74 75
|
bitrdi |
⊢ ( 𝑚 = 𝑗 → ( 𝑚 ∈ { 𝑦 } ↔ 𝑗 = 𝑦 ) ) |
77 |
76
|
anbi1d |
⊢ ( 𝑚 = 𝑗 → ( ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ↔ ( 𝑗 = 𝑦 ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) ) |
78 |
26
|
eleq2d |
⊢ ( 𝑗 = 𝑦 → ( 𝑘 ∈ 𝐵 ↔ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) |
79 |
78
|
pm5.32i |
⊢ ( ( 𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵 ) ↔ ( 𝑗 = 𝑦 ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) |
80 |
77 79
|
bitr4di |
⊢ ( 𝑚 = 𝑗 → ( ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ↔ ( 𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵 ) ) ) |
81 |
73 80
|
anbi12d |
⊢ ( 𝑚 = 𝑗 → ( ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) ↔ ( 𝑧 = 〈 𝑗 , 𝑘 〉 ∧ ( 𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵 ) ) ) ) |
82 |
81
|
exbidv |
⊢ ( 𝑚 = 𝑗 → ( ∃ 𝑘 ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) ↔ ∃ 𝑘 ( 𝑧 = 〈 𝑗 , 𝑘 〉 ∧ ( 𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵 ) ) ) ) |
83 |
70 71 82
|
cbvexv1 |
⊢ ( ∃ 𝑚 ∃ 𝑘 ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) ↔ ∃ 𝑗 ∃ 𝑘 ( 𝑧 = 〈 𝑗 , 𝑘 〉 ∧ ( 𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵 ) ) ) |
84 |
64 83
|
bitri |
⊢ ( 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ↔ ∃ 𝑗 ∃ 𝑘 ( 𝑧 = 〈 𝑗 , 𝑘 〉 ∧ ( 𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵 ) ) ) |
85 |
|
nfv |
⊢ Ⅎ 𝑗 𝜑 |
86 |
|
nfcv |
⊢ Ⅎ 𝑗 ( 2nd ‘ 𝑧 ) |
87 |
86 31
|
nfcsbw |
⊢ Ⅎ 𝑗 ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 |
88 |
87
|
nfeq2 |
⊢ Ⅎ 𝑗 𝐷 = ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 |
89 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
90 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 |
91 |
90
|
nfeq2 |
⊢ Ⅎ 𝑘 𝐷 = ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 |
92 |
1
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) ∧ ( 𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐷 = 𝐶 ) |
93 |
34
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) ∧ ( 𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐶 = ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) |
94 |
|
fveq2 |
⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → ( 2nd ‘ 𝑧 ) = ( 2nd ‘ 〈 𝑗 , 𝑘 〉 ) ) |
95 |
|
vex |
⊢ 𝑗 ∈ V |
96 |
|
vex |
⊢ 𝑘 ∈ V |
97 |
95 96
|
op2nd |
⊢ ( 2nd ‘ 〈 𝑗 , 𝑘 〉 ) = 𝑘 |
98 |
94 97
|
eqtr2di |
⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → 𝑘 = ( 2nd ‘ 𝑧 ) ) |
99 |
98
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) ∧ ( 𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵 ) ) → 𝑘 = ( 2nd ‘ 𝑧 ) ) |
100 |
|
csbeq1a |
⊢ ( 𝑘 = ( 2nd ‘ 𝑧 ) → ⦋ 𝑦 / 𝑗 ⦌ 𝐶 = ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) |
101 |
99 100
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) ∧ ( 𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵 ) ) → ⦋ 𝑦 / 𝑗 ⦌ 𝐶 = ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) |
102 |
92 93 101
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) ∧ ( 𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐷 = ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) |
103 |
102
|
expl |
⊢ ( 𝜑 → ( ( 𝑧 = 〈 𝑗 , 𝑘 〉 ∧ ( 𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐷 = ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) ) |
104 |
89 91 103
|
exlimd |
⊢ ( 𝜑 → ( ∃ 𝑘 ( 𝑧 = 〈 𝑗 , 𝑘 〉 ∧ ( 𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐷 = ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) ) |
105 |
85 88 104
|
exlimd |
⊢ ( 𝜑 → ( ∃ 𝑗 ∃ 𝑘 ( 𝑧 = 〈 𝑗 , 𝑘 〉 ∧ ( 𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐷 = ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) ) |
106 |
84 105
|
syl5bi |
⊢ ( 𝜑 → ( 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) → 𝐷 = ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) ) |
107 |
106
|
imp |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) → 𝐷 = ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) |
108 |
107
|
prodeq2dv |
⊢ ( 𝜑 → ∏ 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) 𝐷 = ∏ 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) |
109 |
63 108
|
eqtr4d |
⊢ ( 𝜑 → ∏ 𝑚 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ⦋ 𝑚 / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 = ∏ 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) 𝐷 ) |
110 |
50 109
|
eqtrid |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑗 ⦌ 𝐶 = ∏ 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) 𝐷 ) |
111 |
46 110
|
eqtrd |
⊢ ( 𝜑 → ∏ 𝑚 ∈ { 𝑦 } ∏ 𝑘 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ⦋ 𝑚 / 𝑗 ⦌ 𝐶 = ∏ 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) 𝐷 ) |
112 |
18 111
|
eqtrid |
⊢ ( 𝜑 → ∏ 𝑗 ∈ { 𝑦 } ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) 𝐷 ) |
113 |
112
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∏ 𝑗 ∈ { 𝑦 } ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) 𝐷 ) |
114 |
9 113
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 · ∏ 𝑗 ∈ { 𝑦 } ∏ 𝑘 ∈ 𝐵 𝐶 ) = ( ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 · ∏ 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) 𝐷 ) ) |
115 |
|
disjsn |
⊢ ( ( 𝑥 ∩ { 𝑦 } ) = ∅ ↔ ¬ 𝑦 ∈ 𝑥 ) |
116 |
5 115
|
sylibr |
⊢ ( 𝜑 → ( 𝑥 ∩ { 𝑦 } ) = ∅ ) |
117 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∪ { 𝑦 } ) = ( 𝑥 ∪ { 𝑦 } ) ) |
118 |
2 6
|
ssfid |
⊢ ( 𝜑 → ( 𝑥 ∪ { 𝑦 } ) ∈ Fin ) |
119 |
6
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → 𝑗 ∈ 𝐴 ) |
120 |
4
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
121 |
3 120
|
fprodcl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ∏ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ ) |
122 |
119 121
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → ∏ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ ) |
123 |
116 117 118 122
|
fprodsplit |
⊢ ( 𝜑 → ∏ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ∏ 𝑘 ∈ 𝐵 𝐶 = ( ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 · ∏ 𝑗 ∈ { 𝑦 } ∏ 𝑘 ∈ 𝐵 𝐶 ) ) |
124 |
123
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∏ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ∏ 𝑘 ∈ 𝐵 𝐶 = ( ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 · ∏ 𝑗 ∈ { 𝑦 } ∏ 𝑘 ∈ 𝐵 𝐶 ) ) |
125 |
|
eliun |
⊢ ( 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ↔ ∃ 𝑗 ∈ 𝑥 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) |
126 |
|
xp1st |
⊢ ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → ( 1st ‘ 𝑧 ) ∈ { 𝑗 } ) |
127 |
|
elsni |
⊢ ( ( 1st ‘ 𝑧 ) ∈ { 𝑗 } → ( 1st ‘ 𝑧 ) = 𝑗 ) |
128 |
126 127
|
syl |
⊢ ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → ( 1st ‘ 𝑧 ) = 𝑗 ) |
129 |
128
|
eleq1d |
⊢ ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → ( ( 1st ‘ 𝑧 ) ∈ 𝑥 ↔ 𝑗 ∈ 𝑥 ) ) |
130 |
129
|
biimparc |
⊢ ( ( 𝑗 ∈ 𝑥 ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) → ( 1st ‘ 𝑧 ) ∈ 𝑥 ) |
131 |
130
|
rexlimiva |
⊢ ( ∃ 𝑗 ∈ 𝑥 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → ( 1st ‘ 𝑧 ) ∈ 𝑥 ) |
132 |
125 131
|
sylbi |
⊢ ( 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) → ( 1st ‘ 𝑧 ) ∈ 𝑥 ) |
133 |
|
xp1st |
⊢ ( 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) → ( 1st ‘ 𝑧 ) ∈ { 𝑦 } ) |
134 |
132 133
|
anim12i |
⊢ ( ( 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ∧ 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) → ( ( 1st ‘ 𝑧 ) ∈ 𝑥 ∧ ( 1st ‘ 𝑧 ) ∈ { 𝑦 } ) ) |
135 |
|
elin |
⊢ ( 𝑧 ∈ ( ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) ↔ ( 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ∧ 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) ) |
136 |
|
elin |
⊢ ( ( 1st ‘ 𝑧 ) ∈ ( 𝑥 ∩ { 𝑦 } ) ↔ ( ( 1st ‘ 𝑧 ) ∈ 𝑥 ∧ ( 1st ‘ 𝑧 ) ∈ { 𝑦 } ) ) |
137 |
134 135 136
|
3imtr4i |
⊢ ( 𝑧 ∈ ( ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) → ( 1st ‘ 𝑧 ) ∈ ( 𝑥 ∩ { 𝑦 } ) ) |
138 |
116
|
eleq2d |
⊢ ( 𝜑 → ( ( 1st ‘ 𝑧 ) ∈ ( 𝑥 ∩ { 𝑦 } ) ↔ ( 1st ‘ 𝑧 ) ∈ ∅ ) ) |
139 |
|
noel |
⊢ ¬ ( 1st ‘ 𝑧 ) ∈ ∅ |
140 |
139
|
pm2.21i |
⊢ ( ( 1st ‘ 𝑧 ) ∈ ∅ → 𝑧 ∈ ∅ ) |
141 |
138 140
|
syl6bi |
⊢ ( 𝜑 → ( ( 1st ‘ 𝑧 ) ∈ ( 𝑥 ∩ { 𝑦 } ) → 𝑧 ∈ ∅ ) ) |
142 |
137 141
|
syl5 |
⊢ ( 𝜑 → ( 𝑧 ∈ ( ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) → 𝑧 ∈ ∅ ) ) |
143 |
142
|
ssrdv |
⊢ ( 𝜑 → ( ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) ⊆ ∅ ) |
144 |
|
ss0 |
⊢ ( ( ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) ⊆ ∅ → ( ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) = ∅ ) |
145 |
143 144
|
syl |
⊢ ( 𝜑 → ( ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) = ∅ ) |
146 |
|
iunxun |
⊢ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) = ( ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ∪ ∪ 𝑗 ∈ { 𝑦 } ( { 𝑗 } × 𝐵 ) ) |
147 |
|
nfcv |
⊢ Ⅎ 𝑚 ( { 𝑗 } × 𝐵 ) |
148 |
|
nfcv |
⊢ Ⅎ 𝑗 { 𝑚 } |
149 |
148 11
|
nfxp |
⊢ Ⅎ 𝑗 ( { 𝑚 } × ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ) |
150 |
|
sneq |
⊢ ( 𝑗 = 𝑚 → { 𝑗 } = { 𝑚 } ) |
151 |
150 14
|
xpeq12d |
⊢ ( 𝑗 = 𝑚 → ( { 𝑗 } × 𝐵 ) = ( { 𝑚 } × ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ) ) |
152 |
147 149 151
|
cbviun |
⊢ ∪ 𝑗 ∈ { 𝑦 } ( { 𝑗 } × 𝐵 ) = ∪ 𝑚 ∈ { 𝑦 } ( { 𝑚 } × ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ) |
153 |
|
sneq |
⊢ ( 𝑚 = 𝑦 → { 𝑚 } = { 𝑦 } ) |
154 |
153 41
|
xpeq12d |
⊢ ( 𝑚 = 𝑦 → ( { 𝑚 } × ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ) = ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) |
155 |
20 154
|
iunxsn |
⊢ ∪ 𝑚 ∈ { 𝑦 } ( { 𝑚 } × ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ) = ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) |
156 |
152 155
|
eqtri |
⊢ ∪ 𝑗 ∈ { 𝑦 } ( { 𝑗 } × 𝐵 ) = ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) |
157 |
156
|
uneq2i |
⊢ ( ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ∪ ∪ 𝑗 ∈ { 𝑦 } ( { 𝑗 } × 𝐵 ) ) = ( ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ∪ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) |
158 |
146 157
|
eqtri |
⊢ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) = ( ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ∪ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) |
159 |
158
|
a1i |
⊢ ( 𝜑 → ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) = ( ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ∪ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) ) |
160 |
|
snfi |
⊢ { 𝑗 } ∈ Fin |
161 |
119 3
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → 𝐵 ∈ Fin ) |
162 |
|
xpfi |
⊢ ( ( { 𝑗 } ∈ Fin ∧ 𝐵 ∈ Fin ) → ( { 𝑗 } × 𝐵 ) ∈ Fin ) |
163 |
160 161 162
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → ( { 𝑗 } × 𝐵 ) ∈ Fin ) |
164 |
163
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) ∈ Fin ) |
165 |
|
iunfi |
⊢ ( ( ( 𝑥 ∪ { 𝑦 } ) ∈ Fin ∧ ∀ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) ∈ Fin ) → ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) ∈ Fin ) |
166 |
118 164 165
|
syl2anc |
⊢ ( 𝜑 → ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) ∈ Fin ) |
167 |
|
eliun |
⊢ ( 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) ↔ ∃ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) |
168 |
|
elxp |
⊢ ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ↔ ∃ 𝑚 ∃ 𝑘 ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘 ∈ 𝐵 ) ) ) |
169 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘 ∈ 𝐵 ) ) ) → 𝑧 = 〈 𝑚 , 𝑘 〉 ) |
170 |
|
simprrl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘 ∈ 𝐵 ) ) ) → 𝑚 ∈ { 𝑗 } ) |
171 |
|
elsni |
⊢ ( 𝑚 ∈ { 𝑗 } → 𝑚 = 𝑗 ) |
172 |
170 171
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘 ∈ 𝐵 ) ) ) → 𝑚 = 𝑗 ) |
173 |
172
|
opeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘 ∈ 𝐵 ) ) ) → 〈 𝑚 , 𝑘 〉 = 〈 𝑗 , 𝑘 〉 ) |
174 |
169 173
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘 ∈ 𝐵 ) ) ) → 𝑧 = 〈 𝑗 , 𝑘 〉 ) |
175 |
174 1
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘 ∈ 𝐵 ) ) ) → 𝐷 = 𝐶 ) |
176 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘 ∈ 𝐵 ) ) ) → 𝜑 ) |
177 |
119
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘 ∈ 𝐵 ) ) ) → 𝑗 ∈ 𝐴 ) |
178 |
|
simprrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘 ∈ 𝐵 ) ) ) → 𝑘 ∈ 𝐵 ) |
179 |
176 177 178 4
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘 ∈ 𝐵 ) ) ) → 𝐶 ∈ ℂ ) |
180 |
175 179
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘 ∈ 𝐵 ) ) ) → 𝐷 ∈ ℂ ) |
181 |
180
|
ex |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → ( ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘 ∈ 𝐵 ) ) → 𝐷 ∈ ℂ ) ) |
182 |
181
|
exlimdvv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → ( ∃ 𝑚 ∃ 𝑘 ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘 ∈ 𝐵 ) ) → 𝐷 ∈ ℂ ) ) |
183 |
168 182
|
syl5bi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → 𝐷 ∈ ℂ ) ) |
184 |
183
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → 𝐷 ∈ ℂ ) ) |
185 |
167 184
|
syl5bi |
⊢ ( 𝜑 → ( 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) → 𝐷 ∈ ℂ ) ) |
186 |
185
|
imp |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) ) → 𝐷 ∈ ℂ ) |
187 |
145 159 166 186
|
fprodsplit |
⊢ ( 𝜑 → ∏ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 = ( ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 · ∏ 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) 𝐷 ) ) |
188 |
187
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∏ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 = ( ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 · ∏ 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) 𝐷 ) ) |
189 |
114 124 188
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∏ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) |