Metamath Proof Explorer


Theorem fprod2dlem

Description: Lemma for fprod2d - induction step. (Contributed by Scott Fenton, 30-Jan-2018)

Ref Expression
Hypotheses fprod2d.1 ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ → 𝐷 = 𝐶 )
fprod2d.2 ( 𝜑𝐴 ∈ Fin )
fprod2d.3 ( ( 𝜑𝑗𝐴 ) → 𝐵 ∈ Fin )
fprod2d.4 ( ( 𝜑 ∧ ( 𝑗𝐴𝑘𝐵 ) ) → 𝐶 ∈ ℂ )
fprod2d.5 ( 𝜑 → ¬ 𝑦𝑥 )
fprod2d.6 ( 𝜑 → ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 )
fprod2d.7 ( 𝜓 ↔ ∏ 𝑗𝑥𝑘𝐵 𝐶 = ∏ 𝑧 𝑗𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 )
Assertion fprod2dlem ( ( 𝜑𝜓 ) → ∏ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ∏ 𝑘𝐵 𝐶 = ∏ 𝑧 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 )

Proof

Step Hyp Ref Expression
1 fprod2d.1 ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ → 𝐷 = 𝐶 )
2 fprod2d.2 ( 𝜑𝐴 ∈ Fin )
3 fprod2d.3 ( ( 𝜑𝑗𝐴 ) → 𝐵 ∈ Fin )
4 fprod2d.4 ( ( 𝜑 ∧ ( 𝑗𝐴𝑘𝐵 ) ) → 𝐶 ∈ ℂ )
5 fprod2d.5 ( 𝜑 → ¬ 𝑦𝑥 )
6 fprod2d.6 ( 𝜑 → ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 )
7 fprod2d.7 ( 𝜓 ↔ ∏ 𝑗𝑥𝑘𝐵 𝐶 = ∏ 𝑧 𝑗𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 )
8 simpr ( ( 𝜑𝜓 ) → 𝜓 )
9 8 7 sylib ( ( 𝜑𝜓 ) → ∏ 𝑗𝑥𝑘𝐵 𝐶 = ∏ 𝑧 𝑗𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 )
10 nfcv 𝑚𝑘𝐵 𝐶
11 nfcsb1v 𝑗 𝑚 / 𝑗 𝐵
12 nfcsb1v 𝑗 𝑚 / 𝑗 𝐶
13 11 12 nfcprod 𝑗𝑘 𝑚 / 𝑗 𝐵 𝑚 / 𝑗 𝐶
14 csbeq1a ( 𝑗 = 𝑚𝐵 = 𝑚 / 𝑗 𝐵 )
15 csbeq1a ( 𝑗 = 𝑚𝐶 = 𝑚 / 𝑗 𝐶 )
16 15 adantr ( ( 𝑗 = 𝑚𝑘𝐵 ) → 𝐶 = 𝑚 / 𝑗 𝐶 )
17 14 16 prodeq12dv ( 𝑗 = 𝑚 → ∏ 𝑘𝐵 𝐶 = ∏ 𝑘 𝑚 / 𝑗 𝐵 𝑚 / 𝑗 𝐶 )
18 10 13 17 cbvprodi 𝑗 ∈ { 𝑦 } ∏ 𝑘𝐵 𝐶 = ∏ 𝑚 ∈ { 𝑦 } ∏ 𝑘 𝑚 / 𝑗 𝐵 𝑚 / 𝑗 𝐶
19 6 unssbd ( 𝜑 → { 𝑦 } ⊆ 𝐴 )
20 vex 𝑦 ∈ V
21 20 snss ( 𝑦𝐴 ↔ { 𝑦 } ⊆ 𝐴 )
22 19 21 sylibr ( 𝜑𝑦𝐴 )
23 3 ralrimiva ( 𝜑 → ∀ 𝑗𝐴 𝐵 ∈ Fin )
24 nfcsb1v 𝑗 𝑦 / 𝑗 𝐵
25 24 nfel1 𝑗 𝑦 / 𝑗 𝐵 ∈ Fin
26 csbeq1a ( 𝑗 = 𝑦𝐵 = 𝑦 / 𝑗 𝐵 )
27 26 eleq1d ( 𝑗 = 𝑦 → ( 𝐵 ∈ Fin ↔ 𝑦 / 𝑗 𝐵 ∈ Fin ) )
28 25 27 rspc ( 𝑦𝐴 → ( ∀ 𝑗𝐴 𝐵 ∈ Fin → 𝑦 / 𝑗 𝐵 ∈ Fin ) )
29 22 23 28 sylc ( 𝜑 𝑦 / 𝑗 𝐵 ∈ Fin )
30 4 ralrimivva ( 𝜑 → ∀ 𝑗𝐴𝑘𝐵 𝐶 ∈ ℂ )
31 nfcsb1v 𝑗 𝑦 / 𝑗 𝐶
32 31 nfel1 𝑗 𝑦 / 𝑗 𝐶 ∈ ℂ
33 24 32 nfralw 𝑗𝑘 𝑦 / 𝑗 𝐵 𝑦 / 𝑗 𝐶 ∈ ℂ
34 csbeq1a ( 𝑗 = 𝑦𝐶 = 𝑦 / 𝑗 𝐶 )
35 34 eleq1d ( 𝑗 = 𝑦 → ( 𝐶 ∈ ℂ ↔ 𝑦 / 𝑗 𝐶 ∈ ℂ ) )
36 26 35 raleqbidv ( 𝑗 = 𝑦 → ( ∀ 𝑘𝐵 𝐶 ∈ ℂ ↔ ∀ 𝑘 𝑦 / 𝑗 𝐵 𝑦 / 𝑗 𝐶 ∈ ℂ ) )
37 33 36 rspc ( 𝑦𝐴 → ( ∀ 𝑗𝐴𝑘𝐵 𝐶 ∈ ℂ → ∀ 𝑘 𝑦 / 𝑗 𝐵 𝑦 / 𝑗 𝐶 ∈ ℂ ) )
38 22 30 37 sylc ( 𝜑 → ∀ 𝑘 𝑦 / 𝑗 𝐵 𝑦 / 𝑗 𝐶 ∈ ℂ )
39 38 r19.21bi ( ( 𝜑𝑘 𝑦 / 𝑗 𝐵 ) → 𝑦 / 𝑗 𝐶 ∈ ℂ )
40 29 39 fprodcl ( 𝜑 → ∏ 𝑘 𝑦 / 𝑗 𝐵 𝑦 / 𝑗 𝐶 ∈ ℂ )
41 csbeq1 ( 𝑚 = 𝑦 𝑚 / 𝑗 𝐵 = 𝑦 / 𝑗 𝐵 )
42 csbeq1 ( 𝑚 = 𝑦 𝑚 / 𝑗 𝐶 = 𝑦 / 𝑗 𝐶 )
43 42 adantr ( ( 𝑚 = 𝑦𝑘 𝑚 / 𝑗 𝐵 ) → 𝑚 / 𝑗 𝐶 = 𝑦 / 𝑗 𝐶 )
44 41 43 prodeq12dv ( 𝑚 = 𝑦 → ∏ 𝑘 𝑚 / 𝑗 𝐵 𝑚 / 𝑗 𝐶 = ∏ 𝑘 𝑦 / 𝑗 𝐵 𝑦 / 𝑗 𝐶 )
45 44 prodsn ( ( 𝑦𝐴 ∧ ∏ 𝑘 𝑦 / 𝑗 𝐵 𝑦 / 𝑗 𝐶 ∈ ℂ ) → ∏ 𝑚 ∈ { 𝑦 } ∏ 𝑘 𝑚 / 𝑗 𝐵 𝑚 / 𝑗 𝐶 = ∏ 𝑘 𝑦 / 𝑗 𝐵 𝑦 / 𝑗 𝐶 )
46 22 40 45 syl2anc ( 𝜑 → ∏ 𝑚 ∈ { 𝑦 } ∏ 𝑘 𝑚 / 𝑗 𝐵 𝑚 / 𝑗 𝐶 = ∏ 𝑘 𝑦 / 𝑗 𝐵 𝑦 / 𝑗 𝐶 )
47 nfcv 𝑚 𝑦 / 𝑗 𝐶
48 nfcsb1v 𝑘 𝑚 / 𝑘 𝑦 / 𝑗 𝐶
49 csbeq1a ( 𝑘 = 𝑚 𝑦 / 𝑗 𝐶 = 𝑚 / 𝑘 𝑦 / 𝑗 𝐶 )
50 47 48 49 cbvprodi 𝑘 𝑦 / 𝑗 𝐵 𝑦 / 𝑗 𝐶 = ∏ 𝑚 𝑦 / 𝑗 𝐵 𝑚 / 𝑘 𝑦 / 𝑗 𝐶
51 csbeq1 ( 𝑚 = ( 2nd𝑧 ) → 𝑚 / 𝑘 𝑦 / 𝑗 𝐶 = ( 2nd𝑧 ) / 𝑘 𝑦 / 𝑗 𝐶 )
52 snfi { 𝑦 } ∈ Fin
53 xpfi ( ( { 𝑦 } ∈ Fin ∧ 𝑦 / 𝑗 𝐵 ∈ Fin ) → ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ∈ Fin )
54 52 29 53 sylancr ( 𝜑 → ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ∈ Fin )
55 2ndconst ( 𝑦𝐴 → ( 2nd ↾ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ) : ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) –1-1-onto 𝑦 / 𝑗 𝐵 )
56 22 55 syl ( 𝜑 → ( 2nd ↾ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ) : ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) –1-1-onto 𝑦 / 𝑗 𝐵 )
57 fvres ( 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) → ( ( 2nd ↾ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ) ‘ 𝑧 ) = ( 2nd𝑧 ) )
58 57 adantl ( ( 𝜑𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ) → ( ( 2nd ↾ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ) ‘ 𝑧 ) = ( 2nd𝑧 ) )
59 48 nfel1 𝑘 𝑚 / 𝑘 𝑦 / 𝑗 𝐶 ∈ ℂ
60 49 eleq1d ( 𝑘 = 𝑚 → ( 𝑦 / 𝑗 𝐶 ∈ ℂ ↔ 𝑚 / 𝑘 𝑦 / 𝑗 𝐶 ∈ ℂ ) )
61 59 60 rspc ( 𝑚 𝑦 / 𝑗 𝐵 → ( ∀ 𝑘 𝑦 / 𝑗 𝐵 𝑦 / 𝑗 𝐶 ∈ ℂ → 𝑚 / 𝑘 𝑦 / 𝑗 𝐶 ∈ ℂ ) )
62 38 61 mpan9 ( ( 𝜑𝑚 𝑦 / 𝑗 𝐵 ) → 𝑚 / 𝑘 𝑦 / 𝑗 𝐶 ∈ ℂ )
63 51 54 56 58 62 fprodf1o ( 𝜑 → ∏ 𝑚 𝑦 / 𝑗 𝐵 𝑚 / 𝑘 𝑦 / 𝑗 𝐶 = ∏ 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ( 2nd𝑧 ) / 𝑘 𝑦 / 𝑗 𝐶 )
64 elxp ( 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ↔ ∃ 𝑚𝑘 ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 𝑦 / 𝑗 𝐵 ) ) )
65 nfv 𝑗 𝑧 = ⟨ 𝑚 , 𝑘
66 nfv 𝑗 𝑚 ∈ { 𝑦 }
67 24 nfcri 𝑗 𝑘 𝑦 / 𝑗 𝐵
68 66 67 nfan 𝑗 ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 𝑦 / 𝑗 𝐵 )
69 65 68 nfan 𝑗 ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 𝑦 / 𝑗 𝐵 ) )
70 69 nfex 𝑗𝑘 ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 𝑦 / 𝑗 𝐵 ) )
71 nfv 𝑚𝑘 ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ∧ ( 𝑗 = 𝑦𝑘𝐵 ) )
72 opeq1 ( 𝑚 = 𝑗 → ⟨ 𝑚 , 𝑘 ⟩ = ⟨ 𝑗 , 𝑘 ⟩ )
73 72 eqeq2d ( 𝑚 = 𝑗 → ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ↔ 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ) )
74 eleq1w ( 𝑚 = 𝑗 → ( 𝑚 ∈ { 𝑦 } ↔ 𝑗 ∈ { 𝑦 } ) )
75 velsn ( 𝑗 ∈ { 𝑦 } ↔ 𝑗 = 𝑦 )
76 74 75 bitrdi ( 𝑚 = 𝑗 → ( 𝑚 ∈ { 𝑦 } ↔ 𝑗 = 𝑦 ) )
77 76 anbi1d ( 𝑚 = 𝑗 → ( ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 𝑦 / 𝑗 𝐵 ) ↔ ( 𝑗 = 𝑦𝑘 𝑦 / 𝑗 𝐵 ) ) )
78 26 eleq2d ( 𝑗 = 𝑦 → ( 𝑘𝐵𝑘 𝑦 / 𝑗 𝐵 ) )
79 78 pm5.32i ( ( 𝑗 = 𝑦𝑘𝐵 ) ↔ ( 𝑗 = 𝑦𝑘 𝑦 / 𝑗 𝐵 ) )
80 77 79 bitr4di ( 𝑚 = 𝑗 → ( ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 𝑦 / 𝑗 𝐵 ) ↔ ( 𝑗 = 𝑦𝑘𝐵 ) ) )
81 73 80 anbi12d ( 𝑚 = 𝑗 → ( ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 𝑦 / 𝑗 𝐵 ) ) ↔ ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ∧ ( 𝑗 = 𝑦𝑘𝐵 ) ) ) )
82 81 exbidv ( 𝑚 = 𝑗 → ( ∃ 𝑘 ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 𝑦 / 𝑗 𝐵 ) ) ↔ ∃ 𝑘 ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ∧ ( 𝑗 = 𝑦𝑘𝐵 ) ) ) )
83 70 71 82 cbvexv1 ( ∃ 𝑚𝑘 ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 𝑦 / 𝑗 𝐵 ) ) ↔ ∃ 𝑗𝑘 ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ∧ ( 𝑗 = 𝑦𝑘𝐵 ) ) )
84 64 83 bitri ( 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ↔ ∃ 𝑗𝑘 ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ∧ ( 𝑗 = 𝑦𝑘𝐵 ) ) )
85 nfv 𝑗 𝜑
86 nfcv 𝑗 ( 2nd𝑧 )
87 86 31 nfcsbw 𝑗 ( 2nd𝑧 ) / 𝑘 𝑦 / 𝑗 𝐶
88 87 nfeq2 𝑗 𝐷 = ( 2nd𝑧 ) / 𝑘 𝑦 / 𝑗 𝐶
89 nfv 𝑘 𝜑
90 nfcsb1v 𝑘 ( 2nd𝑧 ) / 𝑘 𝑦 / 𝑗 𝐶
91 90 nfeq2 𝑘 𝐷 = ( 2nd𝑧 ) / 𝑘 𝑦 / 𝑗 𝐶
92 1 ad2antlr ( ( ( 𝜑𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ) ∧ ( 𝑗 = 𝑦𝑘𝐵 ) ) → 𝐷 = 𝐶 )
93 34 ad2antrl ( ( ( 𝜑𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ) ∧ ( 𝑗 = 𝑦𝑘𝐵 ) ) → 𝐶 = 𝑦 / 𝑗 𝐶 )
94 fveq2 ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ → ( 2nd𝑧 ) = ( 2nd ‘ ⟨ 𝑗 , 𝑘 ⟩ ) )
95 vex 𝑗 ∈ V
96 vex 𝑘 ∈ V
97 95 96 op2nd ( 2nd ‘ ⟨ 𝑗 , 𝑘 ⟩ ) = 𝑘
98 94 97 eqtr2di ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ → 𝑘 = ( 2nd𝑧 ) )
99 98 ad2antlr ( ( ( 𝜑𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ) ∧ ( 𝑗 = 𝑦𝑘𝐵 ) ) → 𝑘 = ( 2nd𝑧 ) )
100 csbeq1a ( 𝑘 = ( 2nd𝑧 ) → 𝑦 / 𝑗 𝐶 = ( 2nd𝑧 ) / 𝑘 𝑦 / 𝑗 𝐶 )
101 99 100 syl ( ( ( 𝜑𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ) ∧ ( 𝑗 = 𝑦𝑘𝐵 ) ) → 𝑦 / 𝑗 𝐶 = ( 2nd𝑧 ) / 𝑘 𝑦 / 𝑗 𝐶 )
102 92 93 101 3eqtrd ( ( ( 𝜑𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ) ∧ ( 𝑗 = 𝑦𝑘𝐵 ) ) → 𝐷 = ( 2nd𝑧 ) / 𝑘 𝑦 / 𝑗 𝐶 )
103 102 expl ( 𝜑 → ( ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ∧ ( 𝑗 = 𝑦𝑘𝐵 ) ) → 𝐷 = ( 2nd𝑧 ) / 𝑘 𝑦 / 𝑗 𝐶 ) )
104 89 91 103 exlimd ( 𝜑 → ( ∃ 𝑘 ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ∧ ( 𝑗 = 𝑦𝑘𝐵 ) ) → 𝐷 = ( 2nd𝑧 ) / 𝑘 𝑦 / 𝑗 𝐶 ) )
105 85 88 104 exlimd ( 𝜑 → ( ∃ 𝑗𝑘 ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ∧ ( 𝑗 = 𝑦𝑘𝐵 ) ) → 𝐷 = ( 2nd𝑧 ) / 𝑘 𝑦 / 𝑗 𝐶 ) )
106 84 105 syl5bi ( 𝜑 → ( 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) → 𝐷 = ( 2nd𝑧 ) / 𝑘 𝑦 / 𝑗 𝐶 ) )
107 106 imp ( ( 𝜑𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ) → 𝐷 = ( 2nd𝑧 ) / 𝑘 𝑦 / 𝑗 𝐶 )
108 107 prodeq2dv ( 𝜑 → ∏ 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) 𝐷 = ∏ 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ( 2nd𝑧 ) / 𝑘 𝑦 / 𝑗 𝐶 )
109 63 108 eqtr4d ( 𝜑 → ∏ 𝑚 𝑦 / 𝑗 𝐵 𝑚 / 𝑘 𝑦 / 𝑗 𝐶 = ∏ 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) 𝐷 )
110 50 109 eqtrid ( 𝜑 → ∏ 𝑘 𝑦 / 𝑗 𝐵 𝑦 / 𝑗 𝐶 = ∏ 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) 𝐷 )
111 46 110 eqtrd ( 𝜑 → ∏ 𝑚 ∈ { 𝑦 } ∏ 𝑘 𝑚 / 𝑗 𝐵 𝑚 / 𝑗 𝐶 = ∏ 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) 𝐷 )
112 18 111 eqtrid ( 𝜑 → ∏ 𝑗 ∈ { 𝑦 } ∏ 𝑘𝐵 𝐶 = ∏ 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) 𝐷 )
113 112 adantr ( ( 𝜑𝜓 ) → ∏ 𝑗 ∈ { 𝑦 } ∏ 𝑘𝐵 𝐶 = ∏ 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) 𝐷 )
114 9 113 oveq12d ( ( 𝜑𝜓 ) → ( ∏ 𝑗𝑥𝑘𝐵 𝐶 · ∏ 𝑗 ∈ { 𝑦 } ∏ 𝑘𝐵 𝐶 ) = ( ∏ 𝑧 𝑗𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 · ∏ 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) 𝐷 ) )
115 disjsn ( ( 𝑥 ∩ { 𝑦 } ) = ∅ ↔ ¬ 𝑦𝑥 )
116 5 115 sylibr ( 𝜑 → ( 𝑥 ∩ { 𝑦 } ) = ∅ )
117 eqidd ( 𝜑 → ( 𝑥 ∪ { 𝑦 } ) = ( 𝑥 ∪ { 𝑦 } ) )
118 2 6 ssfid ( 𝜑 → ( 𝑥 ∪ { 𝑦 } ) ∈ Fin )
119 6 sselda ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → 𝑗𝐴 )
120 4 anassrs ( ( ( 𝜑𝑗𝐴 ) ∧ 𝑘𝐵 ) → 𝐶 ∈ ℂ )
121 3 120 fprodcl ( ( 𝜑𝑗𝐴 ) → ∏ 𝑘𝐵 𝐶 ∈ ℂ )
122 119 121 syldan ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → ∏ 𝑘𝐵 𝐶 ∈ ℂ )
123 116 117 118 122 fprodsplit ( 𝜑 → ∏ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ∏ 𝑘𝐵 𝐶 = ( ∏ 𝑗𝑥𝑘𝐵 𝐶 · ∏ 𝑗 ∈ { 𝑦 } ∏ 𝑘𝐵 𝐶 ) )
124 123 adantr ( ( 𝜑𝜓 ) → ∏ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ∏ 𝑘𝐵 𝐶 = ( ∏ 𝑗𝑥𝑘𝐵 𝐶 · ∏ 𝑗 ∈ { 𝑦 } ∏ 𝑘𝐵 𝐶 ) )
125 eliun ( 𝑧 𝑗𝑥 ( { 𝑗 } × 𝐵 ) ↔ ∃ 𝑗𝑥 𝑧 ∈ ( { 𝑗 } × 𝐵 ) )
126 xp1st ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → ( 1st𝑧 ) ∈ { 𝑗 } )
127 elsni ( ( 1st𝑧 ) ∈ { 𝑗 } → ( 1st𝑧 ) = 𝑗 )
128 126 127 syl ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → ( 1st𝑧 ) = 𝑗 )
129 128 eleq1d ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → ( ( 1st𝑧 ) ∈ 𝑥𝑗𝑥 ) )
130 129 biimparc ( ( 𝑗𝑥𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) → ( 1st𝑧 ) ∈ 𝑥 )
131 130 rexlimiva ( ∃ 𝑗𝑥 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → ( 1st𝑧 ) ∈ 𝑥 )
132 125 131 sylbi ( 𝑧 𝑗𝑥 ( { 𝑗 } × 𝐵 ) → ( 1st𝑧 ) ∈ 𝑥 )
133 xp1st ( 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) → ( 1st𝑧 ) ∈ { 𝑦 } )
134 132 133 anim12i ( ( 𝑧 𝑗𝑥 ( { 𝑗 } × 𝐵 ) ∧ 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ) → ( ( 1st𝑧 ) ∈ 𝑥 ∧ ( 1st𝑧 ) ∈ { 𝑦 } ) )
135 elin ( 𝑧 ∈ ( 𝑗𝑥 ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ) ↔ ( 𝑧 𝑗𝑥 ( { 𝑗 } × 𝐵 ) ∧ 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ) )
136 elin ( ( 1st𝑧 ) ∈ ( 𝑥 ∩ { 𝑦 } ) ↔ ( ( 1st𝑧 ) ∈ 𝑥 ∧ ( 1st𝑧 ) ∈ { 𝑦 } ) )
137 134 135 136 3imtr4i ( 𝑧 ∈ ( 𝑗𝑥 ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ) → ( 1st𝑧 ) ∈ ( 𝑥 ∩ { 𝑦 } ) )
138 116 eleq2d ( 𝜑 → ( ( 1st𝑧 ) ∈ ( 𝑥 ∩ { 𝑦 } ) ↔ ( 1st𝑧 ) ∈ ∅ ) )
139 noel ¬ ( 1st𝑧 ) ∈ ∅
140 139 pm2.21i ( ( 1st𝑧 ) ∈ ∅ → 𝑧 ∈ ∅ )
141 138 140 syl6bi ( 𝜑 → ( ( 1st𝑧 ) ∈ ( 𝑥 ∩ { 𝑦 } ) → 𝑧 ∈ ∅ ) )
142 137 141 syl5 ( 𝜑 → ( 𝑧 ∈ ( 𝑗𝑥 ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ) → 𝑧 ∈ ∅ ) )
143 142 ssrdv ( 𝜑 → ( 𝑗𝑥 ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ) ⊆ ∅ )
144 ss0 ( ( 𝑗𝑥 ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ) ⊆ ∅ → ( 𝑗𝑥 ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ) = ∅ )
145 143 144 syl ( 𝜑 → ( 𝑗𝑥 ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ) = ∅ )
146 iunxun 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) = ( 𝑗𝑥 ( { 𝑗 } × 𝐵 ) ∪ 𝑗 ∈ { 𝑦 } ( { 𝑗 } × 𝐵 ) )
147 nfcv 𝑚 ( { 𝑗 } × 𝐵 )
148 nfcv 𝑗 { 𝑚 }
149 148 11 nfxp 𝑗 ( { 𝑚 } × 𝑚 / 𝑗 𝐵 )
150 sneq ( 𝑗 = 𝑚 → { 𝑗 } = { 𝑚 } )
151 150 14 xpeq12d ( 𝑗 = 𝑚 → ( { 𝑗 } × 𝐵 ) = ( { 𝑚 } × 𝑚 / 𝑗 𝐵 ) )
152 147 149 151 cbviun 𝑗 ∈ { 𝑦 } ( { 𝑗 } × 𝐵 ) = 𝑚 ∈ { 𝑦 } ( { 𝑚 } × 𝑚 / 𝑗 𝐵 )
153 sneq ( 𝑚 = 𝑦 → { 𝑚 } = { 𝑦 } )
154 153 41 xpeq12d ( 𝑚 = 𝑦 → ( { 𝑚 } × 𝑚 / 𝑗 𝐵 ) = ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) )
155 20 154 iunxsn 𝑚 ∈ { 𝑦 } ( { 𝑚 } × 𝑚 / 𝑗 𝐵 ) = ( { 𝑦 } × 𝑦 / 𝑗 𝐵 )
156 152 155 eqtri 𝑗 ∈ { 𝑦 } ( { 𝑗 } × 𝐵 ) = ( { 𝑦 } × 𝑦 / 𝑗 𝐵 )
157 156 uneq2i ( 𝑗𝑥 ( { 𝑗 } × 𝐵 ) ∪ 𝑗 ∈ { 𝑦 } ( { 𝑗 } × 𝐵 ) ) = ( 𝑗𝑥 ( { 𝑗 } × 𝐵 ) ∪ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) )
158 146 157 eqtri 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) = ( 𝑗𝑥 ( { 𝑗 } × 𝐵 ) ∪ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) )
159 158 a1i ( 𝜑 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) = ( 𝑗𝑥 ( { 𝑗 } × 𝐵 ) ∪ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) ) )
160 snfi { 𝑗 } ∈ Fin
161 119 3 syldan ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → 𝐵 ∈ Fin )
162 xpfi ( ( { 𝑗 } ∈ Fin ∧ 𝐵 ∈ Fin ) → ( { 𝑗 } × 𝐵 ) ∈ Fin )
163 160 161 162 sylancr ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → ( { 𝑗 } × 𝐵 ) ∈ Fin )
164 163 ralrimiva ( 𝜑 → ∀ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) ∈ Fin )
165 iunfi ( ( ( 𝑥 ∪ { 𝑦 } ) ∈ Fin ∧ ∀ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) ∈ Fin ) → 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) ∈ Fin )
166 118 164 165 syl2anc ( 𝜑 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) ∈ Fin )
167 eliun ( 𝑧 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) ↔ ∃ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝑧 ∈ ( { 𝑗 } × 𝐵 ) )
168 elxp ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ↔ ∃ 𝑚𝑘 ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘𝐵 ) ) )
169 simprl ( ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘𝐵 ) ) ) → 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ )
170 simprrl ( ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘𝐵 ) ) ) → 𝑚 ∈ { 𝑗 } )
171 elsni ( 𝑚 ∈ { 𝑗 } → 𝑚 = 𝑗 )
172 170 171 syl ( ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘𝐵 ) ) ) → 𝑚 = 𝑗 )
173 172 opeq1d ( ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘𝐵 ) ) ) → ⟨ 𝑚 , 𝑘 ⟩ = ⟨ 𝑗 , 𝑘 ⟩ )
174 169 173 eqtrd ( ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘𝐵 ) ) ) → 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ )
175 174 1 syl ( ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘𝐵 ) ) ) → 𝐷 = 𝐶 )
176 simpll ( ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘𝐵 ) ) ) → 𝜑 )
177 119 adantr ( ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘𝐵 ) ) ) → 𝑗𝐴 )
178 simprrr ( ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘𝐵 ) ) ) → 𝑘𝐵 )
179 176 177 178 4 syl12anc ( ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘𝐵 ) ) ) → 𝐶 ∈ ℂ )
180 175 179 eqeltrd ( ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘𝐵 ) ) ) → 𝐷 ∈ ℂ )
181 180 ex ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → ( ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘𝐵 ) ) → 𝐷 ∈ ℂ ) )
182 181 exlimdvv ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → ( ∃ 𝑚𝑘 ( 𝑧 = ⟨ 𝑚 , 𝑘 ⟩ ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘𝐵 ) ) → 𝐷 ∈ ℂ ) )
183 168 182 syl5bi ( ( 𝜑𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → 𝐷 ∈ ℂ ) )
184 183 rexlimdva ( 𝜑 → ( ∃ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → 𝐷 ∈ ℂ ) )
185 167 184 syl5bi ( 𝜑 → ( 𝑧 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) → 𝐷 ∈ ℂ ) )
186 185 imp ( ( 𝜑𝑧 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) ) → 𝐷 ∈ ℂ )
187 145 159 166 186 fprodsplit ( 𝜑 → ∏ 𝑧 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 = ( ∏ 𝑧 𝑗𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 · ∏ 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) 𝐷 ) )
188 187 adantr ( ( 𝜑𝜓 ) → ∏ 𝑧 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 = ( ∏ 𝑧 𝑗𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 · ∏ 𝑧 ∈ ( { 𝑦 } × 𝑦 / 𝑗 𝐵 ) 𝐷 ) )
189 114 124 188 3eqtr4d ( ( 𝜑𝜓 ) → ∏ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ∏ 𝑘𝐵 𝐶 = ∏ 𝑧 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 )