Step |
Hyp |
Ref |
Expression |
1 |
|
fprodabs.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
fprodabs.2 |
⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) |
3 |
|
fprodabs.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) |
4 |
2 1
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
5 |
|
oveq2 |
⊢ ( 𝑎 = 𝑀 → ( 𝑀 ... 𝑎 ) = ( 𝑀 ... 𝑀 ) ) |
6 |
5
|
prodeq1d |
⊢ ( 𝑎 = 𝑀 → ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) 𝐴 = ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 ) |
7 |
6
|
fveq2d |
⊢ ( 𝑎 = 𝑀 → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) 𝐴 ) = ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 ) ) |
8 |
5
|
prodeq1d |
⊢ ( 𝑎 = 𝑀 → ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) ( abs ‘ 𝐴 ) ) |
9 |
7 8
|
eqeq12d |
⊢ ( 𝑎 = 𝑀 → ( ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 ) ↔ ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) ( abs ‘ 𝐴 ) ) ) |
10 |
9
|
imbi2d |
⊢ ( 𝑎 = 𝑀 → ( ( 𝜑 → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 ) ) ↔ ( 𝜑 → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) ( abs ‘ 𝐴 ) ) ) ) |
11 |
|
oveq2 |
⊢ ( 𝑎 = 𝑛 → ( 𝑀 ... 𝑎 ) = ( 𝑀 ... 𝑛 ) ) |
12 |
11
|
prodeq1d |
⊢ ( 𝑎 = 𝑛 → ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) 𝐴 = ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) |
13 |
12
|
fveq2d |
⊢ ( 𝑎 = 𝑛 → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) 𝐴 ) = ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) ) |
14 |
11
|
prodeq1d |
⊢ ( 𝑎 = 𝑛 → ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) ) |
15 |
13 14
|
eqeq12d |
⊢ ( 𝑎 = 𝑛 → ( ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 ) ↔ ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) ) ) |
16 |
15
|
imbi2d |
⊢ ( 𝑎 = 𝑛 → ( ( 𝜑 → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 ) ) ↔ ( 𝜑 → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) ) ) ) |
17 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑛 + 1 ) → ( 𝑀 ... 𝑎 ) = ( 𝑀 ... ( 𝑛 + 1 ) ) ) |
18 |
17
|
prodeq1d |
⊢ ( 𝑎 = ( 𝑛 + 1 ) → ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) 𝐴 = ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) 𝐴 ) |
19 |
18
|
fveq2d |
⊢ ( 𝑎 = ( 𝑛 + 1 ) → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) 𝐴 ) = ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) 𝐴 ) ) |
20 |
17
|
prodeq1d |
⊢ ( 𝑎 = ( 𝑛 + 1 ) → ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( abs ‘ 𝐴 ) ) |
21 |
19 20
|
eqeq12d |
⊢ ( 𝑎 = ( 𝑛 + 1 ) → ( ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 ) ↔ ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( abs ‘ 𝐴 ) ) ) |
22 |
21
|
imbi2d |
⊢ ( 𝑎 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 ) ) ↔ ( 𝜑 → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( abs ‘ 𝐴 ) ) ) ) |
23 |
|
oveq2 |
⊢ ( 𝑎 = 𝑁 → ( 𝑀 ... 𝑎 ) = ( 𝑀 ... 𝑁 ) ) |
24 |
23
|
prodeq1d |
⊢ ( 𝑎 = 𝑁 → ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) 𝐴 = ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ) |
25 |
24
|
fveq2d |
⊢ ( 𝑎 = 𝑁 → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) 𝐴 ) = ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ) ) |
26 |
23
|
prodeq1d |
⊢ ( 𝑎 = 𝑁 → ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( abs ‘ 𝐴 ) ) |
27 |
25 26
|
eqeq12d |
⊢ ( 𝑎 = 𝑁 → ( ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 ) ↔ ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( abs ‘ 𝐴 ) ) ) |
28 |
27
|
imbi2d |
⊢ ( 𝑎 = 𝑁 → ( ( 𝜑 → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 ) ) ↔ ( 𝜑 → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( abs ‘ 𝐴 ) ) ) ) |
29 |
|
csbfv2g |
⊢ ( 𝑀 ∈ ℤ → ⦋ 𝑀 / 𝑘 ⦌ ( abs ‘ 𝐴 ) = ( abs ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) ) |
30 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ⦋ 𝑀 / 𝑘 ⦌ ( abs ‘ 𝐴 ) = ( abs ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) ) |
31 |
|
fzsn |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) |
32 |
31
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) |
33 |
32
|
prodeq1d |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) ( abs ‘ 𝐴 ) = ∏ 𝑘 ∈ { 𝑀 } ( abs ‘ 𝐴 ) ) |
34 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ ℤ ) |
35 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
36 |
35 1
|
eleqtrrdi |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ 𝑍 ) |
37 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 𝐴 ∈ ℂ ) |
38 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑀 / 𝑘 ⦌ 𝐴 |
39 |
38
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ∈ ℂ |
40 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑀 → 𝐴 = ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) |
41 |
40
|
eleq1d |
⊢ ( 𝑘 = 𝑀 → ( 𝐴 ∈ ℂ ↔ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ∈ ℂ ) ) |
42 |
39 41
|
rspc |
⊢ ( 𝑀 ∈ 𝑍 → ( ∀ 𝑘 ∈ 𝑍 𝐴 ∈ ℂ → ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ∈ ℂ ) ) |
43 |
37 42
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑍 ) → ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
44 |
36 43
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
45 |
44
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( abs ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) ∈ ℝ ) |
46 |
45
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( abs ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) ∈ ℂ ) |
47 |
30 46
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ⦋ 𝑀 / 𝑘 ⦌ ( abs ‘ 𝐴 ) ∈ ℂ ) |
48 |
|
prodsns |
⊢ ( ( 𝑀 ∈ ℤ ∧ ⦋ 𝑀 / 𝑘 ⦌ ( abs ‘ 𝐴 ) ∈ ℂ ) → ∏ 𝑘 ∈ { 𝑀 } ( abs ‘ 𝐴 ) = ⦋ 𝑀 / 𝑘 ⦌ ( abs ‘ 𝐴 ) ) |
49 |
34 47 48
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∏ 𝑘 ∈ { 𝑀 } ( abs ‘ 𝐴 ) = ⦋ 𝑀 / 𝑘 ⦌ ( abs ‘ 𝐴 ) ) |
50 |
33 49
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) ( abs ‘ 𝐴 ) = ⦋ 𝑀 / 𝑘 ⦌ ( abs ‘ 𝐴 ) ) |
51 |
31
|
prodeq1d |
⊢ ( 𝑀 ∈ ℤ → ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 = ∏ 𝑘 ∈ { 𝑀 } 𝐴 ) |
52 |
51
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 = ∏ 𝑘 ∈ { 𝑀 } 𝐴 ) |
53 |
|
prodsns |
⊢ ( ( 𝑀 ∈ ℤ ∧ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ∈ ℂ ) → ∏ 𝑘 ∈ { 𝑀 } 𝐴 = ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) |
54 |
34 44 53
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∏ 𝑘 ∈ { 𝑀 } 𝐴 = ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) |
55 |
52 54
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 = ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) |
56 |
55
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 ) = ( abs ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) ) |
57 |
30 50 56
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) ( abs ‘ 𝐴 ) ) |
58 |
57
|
expcom |
⊢ ( 𝑀 ∈ ℤ → ( 𝜑 → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) ( abs ‘ 𝐴 ) ) ) |
59 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) ) → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) ) |
60 |
|
ovex |
⊢ ( 𝑛 + 1 ) ∈ V |
61 |
|
csbfv2g |
⊢ ( ( 𝑛 + 1 ) ∈ V → ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ ( abs ‘ 𝐴 ) = ( abs ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ) |
62 |
60 61
|
ax-mp |
⊢ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ ( abs ‘ 𝐴 ) = ( abs ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) |
63 |
62
|
eqcomi |
⊢ ( abs ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) = ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ ( abs ‘ 𝐴 ) |
64 |
63
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) ) → ( abs ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) = ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ ( abs ‘ 𝐴 ) ) |
65 |
59 64
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) ) → ( ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) · ( abs ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ) = ( ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) · ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ ( abs ‘ 𝐴 ) ) ) |
66 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
67 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
68 |
67 1
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) → 𝑘 ∈ 𝑍 ) |
69 |
68 3
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ) → 𝐴 ∈ ℂ ) |
70 |
69
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ) → 𝐴 ∈ ℂ ) |
71 |
66 70
|
fprodp1s |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) 𝐴 = ( ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 · ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ) |
72 |
71
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) 𝐴 ) = ( abs ‘ ( ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 · ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ) ) |
73 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑀 ... 𝑛 ) ∈ Fin ) |
74 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
75 |
74 1
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑘 ∈ 𝑍 ) |
76 |
75 3
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝐴 ∈ ℂ ) |
77 |
76
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝐴 ∈ ℂ ) |
78 |
73 77
|
fprodcl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ∈ ℂ ) |
79 |
|
peano2uz |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
80 |
79 1
|
eleqtrrdi |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑛 + 1 ) ∈ 𝑍 ) |
81 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 |
82 |
81
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ∈ ℂ |
83 |
|
csbeq1a |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → 𝐴 = ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) |
84 |
83
|
eleq1d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐴 ∈ ℂ ↔ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ∈ ℂ ) ) |
85 |
82 84
|
rspc |
⊢ ( ( 𝑛 + 1 ) ∈ 𝑍 → ( ∀ 𝑘 ∈ 𝑍 𝐴 ∈ ℂ → ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ∈ ℂ ) ) |
86 |
37 85
|
mpan9 |
⊢ ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ 𝑍 ) → ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
87 |
80 86
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
88 |
78 87
|
absmuld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( abs ‘ ( ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 · ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ) = ( ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) · ( abs ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ) ) |
89 |
72 88
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) 𝐴 ) = ( ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) · ( abs ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ) ) |
90 |
89
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) ) → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) 𝐴 ) = ( ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) · ( abs ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ) ) |
91 |
70
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
92 |
91
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
93 |
66 92
|
fprodp1s |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( abs ‘ 𝐴 ) = ( ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) · ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ ( abs ‘ 𝐴 ) ) ) |
94 |
93
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) ) → ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( abs ‘ 𝐴 ) = ( ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) · ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ ( abs ‘ 𝐴 ) ) ) |
95 |
65 90 94
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) ) → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( abs ‘ 𝐴 ) ) |
96 |
95
|
3exp |
⊢ ( 𝜑 → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( abs ‘ 𝐴 ) ) ) ) |
97 |
96
|
com12 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( abs ‘ 𝐴 ) ) ) ) |
98 |
97
|
a2d |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝜑 → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) ) → ( 𝜑 → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( abs ‘ 𝐴 ) ) ) ) |
99 |
10 16 22 28 58 98
|
uzind4 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( abs ‘ 𝐴 ) ) ) |
100 |
4 99
|
mpcom |
⊢ ( 𝜑 → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( abs ‘ 𝐴 ) ) |