| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodabs.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | fprodabs.2 | ⊢ ( 𝜑  →  𝑁  ∈  𝑍 ) | 
						
							| 3 |  | fprodabs.3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝐴  ∈  ℂ ) | 
						
							| 4 | 2 1 | eleqtrdi | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 5 |  | oveq2 | ⊢ ( 𝑎  =  𝑀  →  ( 𝑀 ... 𝑎 )  =  ( 𝑀 ... 𝑀 ) ) | 
						
							| 6 | 5 | prodeq1d | ⊢ ( 𝑎  =  𝑀  →  ∏ 𝑘  ∈  ( 𝑀 ... 𝑎 ) 𝐴  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑀 ) 𝐴 ) | 
						
							| 7 | 6 | fveq2d | ⊢ ( 𝑎  =  𝑀  →  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑎 ) 𝐴 )  =  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑀 ) 𝐴 ) ) | 
						
							| 8 | 5 | prodeq1d | ⊢ ( 𝑎  =  𝑀  →  ∏ 𝑘  ∈  ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑀 ) ( abs ‘ 𝐴 ) ) | 
						
							| 9 | 7 8 | eqeq12d | ⊢ ( 𝑎  =  𝑀  →  ( ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑎 ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 )  ↔  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑀 ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑀 ) ( abs ‘ 𝐴 ) ) ) | 
						
							| 10 | 9 | imbi2d | ⊢ ( 𝑎  =  𝑀  →  ( ( 𝜑  →  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑎 ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 ) )  ↔  ( 𝜑  →  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑀 ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑀 ) ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 11 |  | oveq2 | ⊢ ( 𝑎  =  𝑛  →  ( 𝑀 ... 𝑎 )  =  ( 𝑀 ... 𝑛 ) ) | 
						
							| 12 | 11 | prodeq1d | ⊢ ( 𝑎  =  𝑛  →  ∏ 𝑘  ∈  ( 𝑀 ... 𝑎 ) 𝐴  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐴 ) | 
						
							| 13 | 12 | fveq2d | ⊢ ( 𝑎  =  𝑛  →  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑎 ) 𝐴 )  =  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐴 ) ) | 
						
							| 14 | 11 | prodeq1d | ⊢ ( 𝑎  =  𝑛  →  ∏ 𝑘  ∈  ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) ) | 
						
							| 15 | 13 14 | eqeq12d | ⊢ ( 𝑎  =  𝑛  →  ( ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑎 ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 )  ↔  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) ) ) | 
						
							| 16 | 15 | imbi2d | ⊢ ( 𝑎  =  𝑛  →  ( ( 𝜑  →  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑎 ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 ) )  ↔  ( 𝜑  →  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 17 |  | oveq2 | ⊢ ( 𝑎  =  ( 𝑛  +  1 )  →  ( 𝑀 ... 𝑎 )  =  ( 𝑀 ... ( 𝑛  +  1 ) ) ) | 
						
							| 18 | 17 | prodeq1d | ⊢ ( 𝑎  =  ( 𝑛  +  1 )  →  ∏ 𝑘  ∈  ( 𝑀 ... 𝑎 ) 𝐴  =  ∏ 𝑘  ∈  ( 𝑀 ... ( 𝑛  +  1 ) ) 𝐴 ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( 𝑎  =  ( 𝑛  +  1 )  →  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑎 ) 𝐴 )  =  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... ( 𝑛  +  1 ) ) 𝐴 ) ) | 
						
							| 20 | 17 | prodeq1d | ⊢ ( 𝑎  =  ( 𝑛  +  1 )  →  ∏ 𝑘  ∈  ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... ( 𝑛  +  1 ) ) ( abs ‘ 𝐴 ) ) | 
						
							| 21 | 19 20 | eqeq12d | ⊢ ( 𝑎  =  ( 𝑛  +  1 )  →  ( ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑎 ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 )  ↔  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... ( 𝑛  +  1 ) ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... ( 𝑛  +  1 ) ) ( abs ‘ 𝐴 ) ) ) | 
						
							| 22 | 21 | imbi2d | ⊢ ( 𝑎  =  ( 𝑛  +  1 )  →  ( ( 𝜑  →  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑎 ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 ) )  ↔  ( 𝜑  →  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... ( 𝑛  +  1 ) ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... ( 𝑛  +  1 ) ) ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 23 |  | oveq2 | ⊢ ( 𝑎  =  𝑁  →  ( 𝑀 ... 𝑎 )  =  ( 𝑀 ... 𝑁 ) ) | 
						
							| 24 | 23 | prodeq1d | ⊢ ( 𝑎  =  𝑁  →  ∏ 𝑘  ∈  ( 𝑀 ... 𝑎 ) 𝐴  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑁 ) 𝐴 ) | 
						
							| 25 | 24 | fveq2d | ⊢ ( 𝑎  =  𝑁  →  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑎 ) 𝐴 )  =  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑁 ) 𝐴 ) ) | 
						
							| 26 | 23 | prodeq1d | ⊢ ( 𝑎  =  𝑁  →  ∏ 𝑘  ∈  ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( abs ‘ 𝐴 ) ) | 
						
							| 27 | 25 26 | eqeq12d | ⊢ ( 𝑎  =  𝑁  →  ( ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑎 ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 )  ↔  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑁 ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( abs ‘ 𝐴 ) ) ) | 
						
							| 28 | 27 | imbi2d | ⊢ ( 𝑎  =  𝑁  →  ( ( 𝜑  →  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑎 ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 ) )  ↔  ( 𝜑  →  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑁 ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 29 |  | csbfv2g | ⊢ ( 𝑀  ∈  ℤ  →  ⦋ 𝑀  /  𝑘 ⦌ ( abs ‘ 𝐴 )  =  ( abs ‘ ⦋ 𝑀  /  𝑘 ⦌ 𝐴 ) ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℤ )  →  ⦋ 𝑀  /  𝑘 ⦌ ( abs ‘ 𝐴 )  =  ( abs ‘ ⦋ 𝑀  /  𝑘 ⦌ 𝐴 ) ) | 
						
							| 31 |  | fzsn | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑀 ... 𝑀 )  =  { 𝑀 } ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℤ )  →  ( 𝑀 ... 𝑀 )  =  { 𝑀 } ) | 
						
							| 33 | 32 | prodeq1d | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℤ )  →  ∏ 𝑘  ∈  ( 𝑀 ... 𝑀 ) ( abs ‘ 𝐴 )  =  ∏ 𝑘  ∈  { 𝑀 } ( abs ‘ 𝐴 ) ) | 
						
							| 34 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℤ )  →  𝑀  ∈  ℤ ) | 
						
							| 35 |  | uzid | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 36 | 35 1 | eleqtrrdi | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  𝑍 ) | 
						
							| 37 | 3 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝑍 𝐴  ∈  ℂ ) | 
						
							| 38 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑀  /  𝑘 ⦌ 𝐴 | 
						
							| 39 | 38 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑀  /  𝑘 ⦌ 𝐴  ∈  ℂ | 
						
							| 40 |  | csbeq1a | ⊢ ( 𝑘  =  𝑀  →  𝐴  =  ⦋ 𝑀  /  𝑘 ⦌ 𝐴 ) | 
						
							| 41 | 40 | eleq1d | ⊢ ( 𝑘  =  𝑀  →  ( 𝐴  ∈  ℂ  ↔  ⦋ 𝑀  /  𝑘 ⦌ 𝐴  ∈  ℂ ) ) | 
						
							| 42 | 39 41 | rspc | ⊢ ( 𝑀  ∈  𝑍  →  ( ∀ 𝑘  ∈  𝑍 𝐴  ∈  ℂ  →  ⦋ 𝑀  /  𝑘 ⦌ 𝐴  ∈  ℂ ) ) | 
						
							| 43 | 37 42 | mpan9 | ⊢ ( ( 𝜑  ∧  𝑀  ∈  𝑍 )  →  ⦋ 𝑀  /  𝑘 ⦌ 𝐴  ∈  ℂ ) | 
						
							| 44 | 36 43 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℤ )  →  ⦋ 𝑀  /  𝑘 ⦌ 𝐴  ∈  ℂ ) | 
						
							| 45 | 44 | abscld | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℤ )  →  ( abs ‘ ⦋ 𝑀  /  𝑘 ⦌ 𝐴 )  ∈  ℝ ) | 
						
							| 46 | 45 | recnd | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℤ )  →  ( abs ‘ ⦋ 𝑀  /  𝑘 ⦌ 𝐴 )  ∈  ℂ ) | 
						
							| 47 | 30 46 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℤ )  →  ⦋ 𝑀  /  𝑘 ⦌ ( abs ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 48 |  | prodsns | ⊢ ( ( 𝑀  ∈  ℤ  ∧  ⦋ 𝑀  /  𝑘 ⦌ ( abs ‘ 𝐴 )  ∈  ℂ )  →  ∏ 𝑘  ∈  { 𝑀 } ( abs ‘ 𝐴 )  =  ⦋ 𝑀  /  𝑘 ⦌ ( abs ‘ 𝐴 ) ) | 
						
							| 49 | 34 47 48 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℤ )  →  ∏ 𝑘  ∈  { 𝑀 } ( abs ‘ 𝐴 )  =  ⦋ 𝑀  /  𝑘 ⦌ ( abs ‘ 𝐴 ) ) | 
						
							| 50 | 33 49 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℤ )  →  ∏ 𝑘  ∈  ( 𝑀 ... 𝑀 ) ( abs ‘ 𝐴 )  =  ⦋ 𝑀  /  𝑘 ⦌ ( abs ‘ 𝐴 ) ) | 
						
							| 51 | 31 | prodeq1d | ⊢ ( 𝑀  ∈  ℤ  →  ∏ 𝑘  ∈  ( 𝑀 ... 𝑀 ) 𝐴  =  ∏ 𝑘  ∈  { 𝑀 } 𝐴 ) | 
						
							| 52 | 51 | adantl | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℤ )  →  ∏ 𝑘  ∈  ( 𝑀 ... 𝑀 ) 𝐴  =  ∏ 𝑘  ∈  { 𝑀 } 𝐴 ) | 
						
							| 53 |  | prodsns | ⊢ ( ( 𝑀  ∈  ℤ  ∧  ⦋ 𝑀  /  𝑘 ⦌ 𝐴  ∈  ℂ )  →  ∏ 𝑘  ∈  { 𝑀 } 𝐴  =  ⦋ 𝑀  /  𝑘 ⦌ 𝐴 ) | 
						
							| 54 | 34 44 53 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℤ )  →  ∏ 𝑘  ∈  { 𝑀 } 𝐴  =  ⦋ 𝑀  /  𝑘 ⦌ 𝐴 ) | 
						
							| 55 | 52 54 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℤ )  →  ∏ 𝑘  ∈  ( 𝑀 ... 𝑀 ) 𝐴  =  ⦋ 𝑀  /  𝑘 ⦌ 𝐴 ) | 
						
							| 56 | 55 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℤ )  →  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑀 ) 𝐴 )  =  ( abs ‘ ⦋ 𝑀  /  𝑘 ⦌ 𝐴 ) ) | 
						
							| 57 | 30 50 56 | 3eqtr4rd | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℤ )  →  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑀 ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑀 ) ( abs ‘ 𝐴 ) ) | 
						
							| 58 | 57 | expcom | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝜑  →  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑀 ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑀 ) ( abs ‘ 𝐴 ) ) ) | 
						
							| 59 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) )  →  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) ) | 
						
							| 60 |  | ovex | ⊢ ( 𝑛  +  1 )  ∈  V | 
						
							| 61 |  | csbfv2g | ⊢ ( ( 𝑛  +  1 )  ∈  V  →  ⦋ ( 𝑛  +  1 )  /  𝑘 ⦌ ( abs ‘ 𝐴 )  =  ( abs ‘ ⦋ ( 𝑛  +  1 )  /  𝑘 ⦌ 𝐴 ) ) | 
						
							| 62 | 60 61 | ax-mp | ⊢ ⦋ ( 𝑛  +  1 )  /  𝑘 ⦌ ( abs ‘ 𝐴 )  =  ( abs ‘ ⦋ ( 𝑛  +  1 )  /  𝑘 ⦌ 𝐴 ) | 
						
							| 63 | 62 | eqcomi | ⊢ ( abs ‘ ⦋ ( 𝑛  +  1 )  /  𝑘 ⦌ 𝐴 )  =  ⦋ ( 𝑛  +  1 )  /  𝑘 ⦌ ( abs ‘ 𝐴 ) | 
						
							| 64 | 63 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) )  →  ( abs ‘ ⦋ ( 𝑛  +  1 )  /  𝑘 ⦌ 𝐴 )  =  ⦋ ( 𝑛  +  1 )  /  𝑘 ⦌ ( abs ‘ 𝐴 ) ) | 
						
							| 65 | 59 64 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) )  →  ( ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐴 )  ·  ( abs ‘ ⦋ ( 𝑛  +  1 )  /  𝑘 ⦌ 𝐴 ) )  =  ( ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 )  ·  ⦋ ( 𝑛  +  1 )  /  𝑘 ⦌ ( abs ‘ 𝐴 ) ) ) | 
						
							| 66 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 67 |  | elfzuz | ⊢ ( 𝑘  ∈  ( 𝑀 ... ( 𝑛  +  1 ) )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 68 | 67 1 | eleqtrrdi | ⊢ ( 𝑘  ∈  ( 𝑀 ... ( 𝑛  +  1 ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 69 | 68 3 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... ( 𝑛  +  1 ) ) )  →  𝐴  ∈  ℂ ) | 
						
							| 70 | 69 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  𝑘  ∈  ( 𝑀 ... ( 𝑛  +  1 ) ) )  →  𝐴  ∈  ℂ ) | 
						
							| 71 | 66 70 | fprodp1s | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ∏ 𝑘  ∈  ( 𝑀 ... ( 𝑛  +  1 ) ) 𝐴  =  ( ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐴  ·  ⦋ ( 𝑛  +  1 )  /  𝑘 ⦌ 𝐴 ) ) | 
						
							| 72 | 71 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... ( 𝑛  +  1 ) ) 𝐴 )  =  ( abs ‘ ( ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐴  ·  ⦋ ( 𝑛  +  1 )  /  𝑘 ⦌ 𝐴 ) ) ) | 
						
							| 73 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝑀 ... 𝑛 )  ∈  Fin ) | 
						
							| 74 |  | elfzuz | ⊢ ( 𝑘  ∈  ( 𝑀 ... 𝑛 )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 75 | 74 1 | eleqtrrdi | ⊢ ( 𝑘  ∈  ( 𝑀 ... 𝑛 )  →  𝑘  ∈  𝑍 ) | 
						
							| 76 | 75 3 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑛 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 77 | 76 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  𝑘  ∈  ( 𝑀 ... 𝑛 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 78 | 73 77 | fprodcl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐴  ∈  ℂ ) | 
						
							| 79 |  | peano2uz | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑛  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 80 | 79 1 | eleqtrrdi | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑛  +  1 )  ∈  𝑍 ) | 
						
							| 81 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ ( 𝑛  +  1 )  /  𝑘 ⦌ 𝐴 | 
						
							| 82 | 81 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ ( 𝑛  +  1 )  /  𝑘 ⦌ 𝐴  ∈  ℂ | 
						
							| 83 |  | csbeq1a | ⊢ ( 𝑘  =  ( 𝑛  +  1 )  →  𝐴  =  ⦋ ( 𝑛  +  1 )  /  𝑘 ⦌ 𝐴 ) | 
						
							| 84 | 83 | eleq1d | ⊢ ( 𝑘  =  ( 𝑛  +  1 )  →  ( 𝐴  ∈  ℂ  ↔  ⦋ ( 𝑛  +  1 )  /  𝑘 ⦌ 𝐴  ∈  ℂ ) ) | 
						
							| 85 | 82 84 | rspc | ⊢ ( ( 𝑛  +  1 )  ∈  𝑍  →  ( ∀ 𝑘  ∈  𝑍 𝐴  ∈  ℂ  →  ⦋ ( 𝑛  +  1 )  /  𝑘 ⦌ 𝐴  ∈  ℂ ) ) | 
						
							| 86 | 37 85 | mpan9 | ⊢ ( ( 𝜑  ∧  ( 𝑛  +  1 )  ∈  𝑍 )  →  ⦋ ( 𝑛  +  1 )  /  𝑘 ⦌ 𝐴  ∈  ℂ ) | 
						
							| 87 | 80 86 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ⦋ ( 𝑛  +  1 )  /  𝑘 ⦌ 𝐴  ∈  ℂ ) | 
						
							| 88 | 78 87 | absmuld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( abs ‘ ( ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐴  ·  ⦋ ( 𝑛  +  1 )  /  𝑘 ⦌ 𝐴 ) )  =  ( ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐴 )  ·  ( abs ‘ ⦋ ( 𝑛  +  1 )  /  𝑘 ⦌ 𝐴 ) ) ) | 
						
							| 89 | 72 88 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... ( 𝑛  +  1 ) ) 𝐴 )  =  ( ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐴 )  ·  ( abs ‘ ⦋ ( 𝑛  +  1 )  /  𝑘 ⦌ 𝐴 ) ) ) | 
						
							| 90 | 89 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) )  →  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... ( 𝑛  +  1 ) ) 𝐴 )  =  ( ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐴 )  ·  ( abs ‘ ⦋ ( 𝑛  +  1 )  /  𝑘 ⦌ 𝐴 ) ) ) | 
						
							| 91 | 70 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  𝑘  ∈  ( 𝑀 ... ( 𝑛  +  1 ) ) )  →  ( abs ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 92 | 91 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  𝑘  ∈  ( 𝑀 ... ( 𝑛  +  1 ) ) )  →  ( abs ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 93 | 66 92 | fprodp1s | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ∏ 𝑘  ∈  ( 𝑀 ... ( 𝑛  +  1 ) ) ( abs ‘ 𝐴 )  =  ( ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 )  ·  ⦋ ( 𝑛  +  1 )  /  𝑘 ⦌ ( abs ‘ 𝐴 ) ) ) | 
						
							| 94 | 93 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) )  →  ∏ 𝑘  ∈  ( 𝑀 ... ( 𝑛  +  1 ) ) ( abs ‘ 𝐴 )  =  ( ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 )  ·  ⦋ ( 𝑛  +  1 )  /  𝑘 ⦌ ( abs ‘ 𝐴 ) ) ) | 
						
							| 95 | 65 90 94 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) )  →  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... ( 𝑛  +  1 ) ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... ( 𝑛  +  1 ) ) ( abs ‘ 𝐴 ) ) | 
						
							| 96 | 95 | 3exp | ⊢ ( 𝜑  →  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 )  →  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... ( 𝑛  +  1 ) ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... ( 𝑛  +  1 ) ) ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 97 | 96 | com12 | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝜑  →  ( ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 )  →  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... ( 𝑛  +  1 ) ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... ( 𝑛  +  1 ) ) ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 98 | 97 | a2d | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( 𝜑  →  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) )  →  ( 𝜑  →  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... ( 𝑛  +  1 ) ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... ( 𝑛  +  1 ) ) ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 99 | 10 16 22 28 58 98 | uzind4 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝜑  →  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑁 ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( abs ‘ 𝐴 ) ) ) | 
						
							| 100 | 4 99 | mpcom | ⊢ ( 𝜑  →  ( abs ‘ ∏ 𝑘  ∈  ( 𝑀 ... 𝑁 ) 𝐴 )  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( abs ‘ 𝐴 ) ) |