Step |
Hyp |
Ref |
Expression |
1 |
|
fprodabs2.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
fprodabs2.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
3 |
|
prodeq1 |
⊢ ( 𝑥 = ∅ → ∏ 𝑘 ∈ 𝑥 𝐵 = ∏ 𝑘 ∈ ∅ 𝐵 ) |
4 |
3
|
fveq2d |
⊢ ( 𝑥 = ∅ → ( abs ‘ ∏ 𝑘 ∈ 𝑥 𝐵 ) = ( abs ‘ ∏ 𝑘 ∈ ∅ 𝐵 ) ) |
5 |
|
prodeq1 |
⊢ ( 𝑥 = ∅ → ∏ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) = ∏ 𝑘 ∈ ∅ ( abs ‘ 𝐵 ) ) |
6 |
4 5
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( abs ‘ ∏ 𝑘 ∈ 𝑥 𝐵 ) = ∏ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ↔ ( abs ‘ ∏ 𝑘 ∈ ∅ 𝐵 ) = ∏ 𝑘 ∈ ∅ ( abs ‘ 𝐵 ) ) ) |
7 |
|
prodeq1 |
⊢ ( 𝑥 = 𝑦 → ∏ 𝑘 ∈ 𝑥 𝐵 = ∏ 𝑘 ∈ 𝑦 𝐵 ) |
8 |
7
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( abs ‘ ∏ 𝑘 ∈ 𝑥 𝐵 ) = ( abs ‘ ∏ 𝑘 ∈ 𝑦 𝐵 ) ) |
9 |
|
prodeq1 |
⊢ ( 𝑥 = 𝑦 → ∏ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) = ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) ) |
10 |
8 9
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( abs ‘ ∏ 𝑘 ∈ 𝑥 𝐵 ) = ∏ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ↔ ( abs ‘ ∏ 𝑘 ∈ 𝑦 𝐵 ) = ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) ) ) |
11 |
|
prodeq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ∏ 𝑘 ∈ 𝑥 𝐵 = ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) |
12 |
11
|
fveq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( abs ‘ ∏ 𝑘 ∈ 𝑥 𝐵 ) = ( abs ‘ ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) |
13 |
|
prodeq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ∏ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) = ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( abs ‘ 𝐵 ) ) |
14 |
12 13
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( abs ‘ ∏ 𝑘 ∈ 𝑥 𝐵 ) = ∏ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ↔ ( abs ‘ ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) = ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( abs ‘ 𝐵 ) ) ) |
15 |
|
prodeq1 |
⊢ ( 𝑥 = 𝐴 → ∏ 𝑘 ∈ 𝑥 𝐵 = ∏ 𝑘 ∈ 𝐴 𝐵 ) |
16 |
15
|
fveq2d |
⊢ ( 𝑥 = 𝐴 → ( abs ‘ ∏ 𝑘 ∈ 𝑥 𝐵 ) = ( abs ‘ ∏ 𝑘 ∈ 𝐴 𝐵 ) ) |
17 |
|
prodeq1 |
⊢ ( 𝑥 = 𝐴 → ∏ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) = ∏ 𝑘 ∈ 𝐴 ( abs ‘ 𝐵 ) ) |
18 |
16 17
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( abs ‘ ∏ 𝑘 ∈ 𝑥 𝐵 ) = ∏ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ↔ ( abs ‘ ∏ 𝑘 ∈ 𝐴 𝐵 ) = ∏ 𝑘 ∈ 𝐴 ( abs ‘ 𝐵 ) ) ) |
19 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
20 |
|
prod0 |
⊢ ∏ 𝑘 ∈ ∅ 𝐵 = 1 |
21 |
20
|
fveq2i |
⊢ ( abs ‘ ∏ 𝑘 ∈ ∅ 𝐵 ) = ( abs ‘ 1 ) |
22 |
|
prod0 |
⊢ ∏ 𝑘 ∈ ∅ ( abs ‘ 𝐵 ) = 1 |
23 |
19 21 22
|
3eqtr4i |
⊢ ( abs ‘ ∏ 𝑘 ∈ ∅ 𝐵 ) = ∏ 𝑘 ∈ ∅ ( abs ‘ 𝐵 ) |
24 |
23
|
a1i |
⊢ ( 𝜑 → ( abs ‘ ∏ 𝑘 ∈ ∅ 𝐵 ) = ∏ 𝑘 ∈ ∅ ( abs ‘ 𝐵 ) ) |
25 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( abs ‘ ∏ 𝑘 ∈ 𝑦 𝐵 ) = ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) ) → ( ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) · ( abs ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) = ( ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) · ( abs ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
26 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) |
27 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐵 |
28 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) → 𝐴 ∈ Fin ) |
29 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ⊆ 𝐴 ) |
30 |
|
ssfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ∈ Fin ) |
31 |
28 29 30
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ∈ Fin ) |
32 |
31
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑦 ∈ Fin ) |
33 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) |
34 |
33
|
eldifbd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ¬ 𝑧 ∈ 𝑦 ) |
35 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝜑 ) |
36 |
29
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝑘 ∈ 𝑦 ) → 𝑘 ∈ 𝐴 ) |
37 |
36
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝑘 ∈ 𝐴 ) |
38 |
35 37 2
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝐵 ∈ ℂ ) |
39 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑧 → 𝐵 = ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) |
40 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝜑 ) |
41 |
33
|
eldifad |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑧 ∈ 𝐴 ) |
42 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) |
43 |
27
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ |
44 |
42 43
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
45 |
|
eleq1w |
⊢ ( 𝑘 = 𝑧 → ( 𝑘 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) |
46 |
45
|
anbi2d |
⊢ ( 𝑘 = 𝑧 → ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ) ) |
47 |
39
|
eleq1d |
⊢ ( 𝑘 = 𝑧 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
48 |
46 47
|
imbi12d |
⊢ ( 𝑘 = 𝑧 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) ) |
49 |
44 48 2
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
50 |
40 41 49
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
51 |
26 27 32 33 34 38 39 50
|
fprodsplitsn |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 = ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
52 |
51
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( abs ‘ ∏ 𝑘 ∈ 𝑦 𝐵 ) = ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) ) → ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 = ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
53 |
52
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( abs ‘ ∏ 𝑘 ∈ 𝑦 𝐵 ) = ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) ) → ( abs ‘ ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) = ( abs ‘ ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
54 |
26 32 38
|
fprodclf |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ∏ 𝑘 ∈ 𝑦 𝐵 ∈ ℂ ) |
55 |
54 50
|
absmuld |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( abs ‘ ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) = ( ( abs ‘ ∏ 𝑘 ∈ 𝑦 𝐵 ) · ( abs ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
56 |
55
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( abs ‘ ∏ 𝑘 ∈ 𝑦 𝐵 ) = ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) ) → ( abs ‘ ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) = ( ( abs ‘ ∏ 𝑘 ∈ 𝑦 𝐵 ) · ( abs ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
57 |
|
oveq1 |
⊢ ( ( abs ‘ ∏ 𝑘 ∈ 𝑦 𝐵 ) = ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) → ( ( abs ‘ ∏ 𝑘 ∈ 𝑦 𝐵 ) · ( abs ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) = ( ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) · ( abs ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
58 |
57
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( abs ‘ ∏ 𝑘 ∈ 𝑦 𝐵 ) = ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) ) → ( ( abs ‘ ∏ 𝑘 ∈ 𝑦 𝐵 ) · ( abs ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) = ( ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) · ( abs ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
59 |
53 56 58
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( abs ‘ ∏ 𝑘 ∈ 𝑦 𝐵 ) = ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) ) → ( abs ‘ ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) = ( ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) · ( abs ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
60 |
|
nfcv |
⊢ Ⅎ 𝑘 abs |
61 |
60 27
|
nffv |
⊢ Ⅎ 𝑘 ( abs ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) |
62 |
38
|
abscld |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
63 |
62
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → ( abs ‘ 𝐵 ) ∈ ℂ ) |
64 |
39
|
fveq2d |
⊢ ( 𝑘 = 𝑧 → ( abs ‘ 𝐵 ) = ( abs ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
65 |
50
|
abscld |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( abs ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) |
66 |
65
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( abs ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∈ ℂ ) |
67 |
26 61 32 33 34 63 64 66
|
fprodsplitsn |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( abs ‘ 𝐵 ) = ( ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) · ( abs ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
68 |
67
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( abs ‘ ∏ 𝑘 ∈ 𝑦 𝐵 ) = ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) ) → ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( abs ‘ 𝐵 ) = ( ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) · ( abs ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
69 |
25 59 68
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( abs ‘ ∏ 𝑘 ∈ 𝑦 𝐵 ) = ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) ) → ( abs ‘ ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) = ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( abs ‘ 𝐵 ) ) |
70 |
69
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ( abs ‘ ∏ 𝑘 ∈ 𝑦 𝐵 ) = ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) → ( abs ‘ ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) = ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( abs ‘ 𝐵 ) ) ) |
71 |
6 10 14 18 24 70 1
|
findcard2d |
⊢ ( 𝜑 → ( abs ‘ ∏ 𝑘 ∈ 𝐴 𝐵 ) = ∏ 𝑘 ∈ 𝐴 ( abs ‘ 𝐵 ) ) |