| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodabs2.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 2 |  | fprodabs2.b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | prodeq1 | ⊢ ( 𝑥  =  ∅  →  ∏ 𝑘  ∈  𝑥 𝐵  =  ∏ 𝑘  ∈  ∅ 𝐵 ) | 
						
							| 4 | 3 | fveq2d | ⊢ ( 𝑥  =  ∅  →  ( abs ‘ ∏ 𝑘  ∈  𝑥 𝐵 )  =  ( abs ‘ ∏ 𝑘  ∈  ∅ 𝐵 ) ) | 
						
							| 5 |  | prodeq1 | ⊢ ( 𝑥  =  ∅  →  ∏ 𝑘  ∈  𝑥 ( abs ‘ 𝐵 )  =  ∏ 𝑘  ∈  ∅ ( abs ‘ 𝐵 ) ) | 
						
							| 6 | 4 5 | eqeq12d | ⊢ ( 𝑥  =  ∅  →  ( ( abs ‘ ∏ 𝑘  ∈  𝑥 𝐵 )  =  ∏ 𝑘  ∈  𝑥 ( abs ‘ 𝐵 )  ↔  ( abs ‘ ∏ 𝑘  ∈  ∅ 𝐵 )  =  ∏ 𝑘  ∈  ∅ ( abs ‘ 𝐵 ) ) ) | 
						
							| 7 |  | prodeq1 | ⊢ ( 𝑥  =  𝑦  →  ∏ 𝑘  ∈  𝑥 𝐵  =  ∏ 𝑘  ∈  𝑦 𝐵 ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( 𝑥  =  𝑦  →  ( abs ‘ ∏ 𝑘  ∈  𝑥 𝐵 )  =  ( abs ‘ ∏ 𝑘  ∈  𝑦 𝐵 ) ) | 
						
							| 9 |  | prodeq1 | ⊢ ( 𝑥  =  𝑦  →  ∏ 𝑘  ∈  𝑥 ( abs ‘ 𝐵 )  =  ∏ 𝑘  ∈  𝑦 ( abs ‘ 𝐵 ) ) | 
						
							| 10 | 8 9 | eqeq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( abs ‘ ∏ 𝑘  ∈  𝑥 𝐵 )  =  ∏ 𝑘  ∈  𝑥 ( abs ‘ 𝐵 )  ↔  ( abs ‘ ∏ 𝑘  ∈  𝑦 𝐵 )  =  ∏ 𝑘  ∈  𝑦 ( abs ‘ 𝐵 ) ) ) | 
						
							| 11 |  | prodeq1 | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑧 } )  →  ∏ 𝑘  ∈  𝑥 𝐵  =  ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) 𝐵 ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑧 } )  →  ( abs ‘ ∏ 𝑘  ∈  𝑥 𝐵 )  =  ( abs ‘ ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) 𝐵 ) ) | 
						
							| 13 |  | prodeq1 | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑧 } )  →  ∏ 𝑘  ∈  𝑥 ( abs ‘ 𝐵 )  =  ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) ( abs ‘ 𝐵 ) ) | 
						
							| 14 | 12 13 | eqeq12d | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑧 } )  →  ( ( abs ‘ ∏ 𝑘  ∈  𝑥 𝐵 )  =  ∏ 𝑘  ∈  𝑥 ( abs ‘ 𝐵 )  ↔  ( abs ‘ ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) 𝐵 )  =  ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) ( abs ‘ 𝐵 ) ) ) | 
						
							| 15 |  | prodeq1 | ⊢ ( 𝑥  =  𝐴  →  ∏ 𝑘  ∈  𝑥 𝐵  =  ∏ 𝑘  ∈  𝐴 𝐵 ) | 
						
							| 16 | 15 | fveq2d | ⊢ ( 𝑥  =  𝐴  →  ( abs ‘ ∏ 𝑘  ∈  𝑥 𝐵 )  =  ( abs ‘ ∏ 𝑘  ∈  𝐴 𝐵 ) ) | 
						
							| 17 |  | prodeq1 | ⊢ ( 𝑥  =  𝐴  →  ∏ 𝑘  ∈  𝑥 ( abs ‘ 𝐵 )  =  ∏ 𝑘  ∈  𝐴 ( abs ‘ 𝐵 ) ) | 
						
							| 18 | 16 17 | eqeq12d | ⊢ ( 𝑥  =  𝐴  →  ( ( abs ‘ ∏ 𝑘  ∈  𝑥 𝐵 )  =  ∏ 𝑘  ∈  𝑥 ( abs ‘ 𝐵 )  ↔  ( abs ‘ ∏ 𝑘  ∈  𝐴 𝐵 )  =  ∏ 𝑘  ∈  𝐴 ( abs ‘ 𝐵 ) ) ) | 
						
							| 19 |  | abs1 | ⊢ ( abs ‘ 1 )  =  1 | 
						
							| 20 |  | prod0 | ⊢ ∏ 𝑘  ∈  ∅ 𝐵  =  1 | 
						
							| 21 | 20 | fveq2i | ⊢ ( abs ‘ ∏ 𝑘  ∈  ∅ 𝐵 )  =  ( abs ‘ 1 ) | 
						
							| 22 |  | prod0 | ⊢ ∏ 𝑘  ∈  ∅ ( abs ‘ 𝐵 )  =  1 | 
						
							| 23 | 19 21 22 | 3eqtr4i | ⊢ ( abs ‘ ∏ 𝑘  ∈  ∅ 𝐵 )  =  ∏ 𝑘  ∈  ∅ ( abs ‘ 𝐵 ) | 
						
							| 24 | 23 | a1i | ⊢ ( 𝜑  →  ( abs ‘ ∏ 𝑘  ∈  ∅ 𝐵 )  =  ∏ 𝑘  ∈  ∅ ( abs ‘ 𝐵 ) ) | 
						
							| 25 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  ( abs ‘ ∏ 𝑘  ∈  𝑦 𝐵 )  =  ∏ 𝑘  ∈  𝑦 ( abs ‘ 𝐵 ) )  →  ( ∏ 𝑘  ∈  𝑦 ( abs ‘ 𝐵 )  ·  ( abs ‘ ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) )  =  ( ∏ 𝑘  ∈  𝑦 ( abs ‘ 𝐵 )  ·  ( abs ‘ ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) ) ) | 
						
							| 26 |  | nfv | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) ) | 
						
							| 27 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑧  /  𝑘 ⦌ 𝐵 | 
						
							| 28 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ⊆  𝐴 )  →  𝐴  ∈  Fin ) | 
						
							| 29 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  ⊆  𝐴 )  →  𝑦  ⊆  𝐴 ) | 
						
							| 30 |  | ssfi | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝑦  ⊆  𝐴 )  →  𝑦  ∈  Fin ) | 
						
							| 31 | 28 29 30 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑦  ⊆  𝐴 )  →  𝑦  ∈  Fin ) | 
						
							| 32 | 31 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  𝑦  ∈  Fin ) | 
						
							| 33 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) | 
						
							| 34 | 33 | eldifbd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ¬  𝑧  ∈  𝑦 ) | 
						
							| 35 |  | simpll | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  𝑘  ∈  𝑦 )  →  𝜑 ) | 
						
							| 36 | 29 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑦  ⊆  𝐴 )  ∧  𝑘  ∈  𝑦 )  →  𝑘  ∈  𝐴 ) | 
						
							| 37 | 36 | adantlrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  𝑘  ∈  𝑦 )  →  𝑘  ∈  𝐴 ) | 
						
							| 38 | 35 37 2 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  𝑘  ∈  𝑦 )  →  𝐵  ∈  ℂ ) | 
						
							| 39 |  | csbeq1a | ⊢ ( 𝑘  =  𝑧  →  𝐵  =  ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) | 
						
							| 40 |  | simpl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  𝜑 ) | 
						
							| 41 | 33 | eldifad | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  𝑧  ∈  𝐴 ) | 
						
							| 42 |  | nfv | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑧  ∈  𝐴 ) | 
						
							| 43 | 27 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑧  /  𝑘 ⦌ 𝐵  ∈  ℂ | 
						
							| 44 | 42 43 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑧  ∈  𝐴 )  →  ⦋ 𝑧  /  𝑘 ⦌ 𝐵  ∈  ℂ ) | 
						
							| 45 |  | eleq1w | ⊢ ( 𝑘  =  𝑧  →  ( 𝑘  ∈  𝐴  ↔  𝑧  ∈  𝐴 ) ) | 
						
							| 46 | 45 | anbi2d | ⊢ ( 𝑘  =  𝑧  →  ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  ↔  ( 𝜑  ∧  𝑧  ∈  𝐴 ) ) ) | 
						
							| 47 | 39 | eleq1d | ⊢ ( 𝑘  =  𝑧  →  ( 𝐵  ∈  ℂ  ↔  ⦋ 𝑧  /  𝑘 ⦌ 𝐵  ∈  ℂ ) ) | 
						
							| 48 | 46 47 | imbi12d | ⊢ ( 𝑘  =  𝑧  →  ( ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ )  ↔  ( ( 𝜑  ∧  𝑧  ∈  𝐴 )  →  ⦋ 𝑧  /  𝑘 ⦌ 𝐵  ∈  ℂ ) ) ) | 
						
							| 49 | 44 48 2 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐴 )  →  ⦋ 𝑧  /  𝑘 ⦌ 𝐵  ∈  ℂ ) | 
						
							| 50 | 40 41 49 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ⦋ 𝑧  /  𝑘 ⦌ 𝐵  ∈  ℂ ) | 
						
							| 51 | 26 27 32 33 34 38 39 50 | fprodsplitsn | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) 𝐵  =  ( ∏ 𝑘  ∈  𝑦 𝐵  ·  ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  ( abs ‘ ∏ 𝑘  ∈  𝑦 𝐵 )  =  ∏ 𝑘  ∈  𝑦 ( abs ‘ 𝐵 ) )  →  ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) 𝐵  =  ( ∏ 𝑘  ∈  𝑦 𝐵  ·  ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) ) | 
						
							| 53 | 52 | fveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  ( abs ‘ ∏ 𝑘  ∈  𝑦 𝐵 )  =  ∏ 𝑘  ∈  𝑦 ( abs ‘ 𝐵 ) )  →  ( abs ‘ ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) 𝐵 )  =  ( abs ‘ ( ∏ 𝑘  ∈  𝑦 𝐵  ·  ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) ) ) | 
						
							| 54 | 26 32 38 | fprodclf | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ∏ 𝑘  ∈  𝑦 𝐵  ∈  ℂ ) | 
						
							| 55 | 54 50 | absmuld | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ( abs ‘ ( ∏ 𝑘  ∈  𝑦 𝐵  ·  ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) )  =  ( ( abs ‘ ∏ 𝑘  ∈  𝑦 𝐵 )  ·  ( abs ‘ ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) ) ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  ( abs ‘ ∏ 𝑘  ∈  𝑦 𝐵 )  =  ∏ 𝑘  ∈  𝑦 ( abs ‘ 𝐵 ) )  →  ( abs ‘ ( ∏ 𝑘  ∈  𝑦 𝐵  ·  ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) )  =  ( ( abs ‘ ∏ 𝑘  ∈  𝑦 𝐵 )  ·  ( abs ‘ ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) ) ) | 
						
							| 57 |  | oveq1 | ⊢ ( ( abs ‘ ∏ 𝑘  ∈  𝑦 𝐵 )  =  ∏ 𝑘  ∈  𝑦 ( abs ‘ 𝐵 )  →  ( ( abs ‘ ∏ 𝑘  ∈  𝑦 𝐵 )  ·  ( abs ‘ ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) )  =  ( ∏ 𝑘  ∈  𝑦 ( abs ‘ 𝐵 )  ·  ( abs ‘ ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) ) ) | 
						
							| 58 | 57 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  ( abs ‘ ∏ 𝑘  ∈  𝑦 𝐵 )  =  ∏ 𝑘  ∈  𝑦 ( abs ‘ 𝐵 ) )  →  ( ( abs ‘ ∏ 𝑘  ∈  𝑦 𝐵 )  ·  ( abs ‘ ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) )  =  ( ∏ 𝑘  ∈  𝑦 ( abs ‘ 𝐵 )  ·  ( abs ‘ ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) ) ) | 
						
							| 59 | 53 56 58 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  ( abs ‘ ∏ 𝑘  ∈  𝑦 𝐵 )  =  ∏ 𝑘  ∈  𝑦 ( abs ‘ 𝐵 ) )  →  ( abs ‘ ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) 𝐵 )  =  ( ∏ 𝑘  ∈  𝑦 ( abs ‘ 𝐵 )  ·  ( abs ‘ ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) ) ) | 
						
							| 60 |  | nfcv | ⊢ Ⅎ 𝑘 abs | 
						
							| 61 | 60 27 | nffv | ⊢ Ⅎ 𝑘 ( abs ‘ ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) | 
						
							| 62 | 38 | abscld | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  𝑘  ∈  𝑦 )  →  ( abs ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 63 | 62 | recnd | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  𝑘  ∈  𝑦 )  →  ( abs ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 64 | 39 | fveq2d | ⊢ ( 𝑘  =  𝑧  →  ( abs ‘ 𝐵 )  =  ( abs ‘ ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) ) | 
						
							| 65 | 50 | abscld | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ( abs ‘ ⦋ 𝑧  /  𝑘 ⦌ 𝐵 )  ∈  ℝ ) | 
						
							| 66 | 65 | recnd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ( abs ‘ ⦋ 𝑧  /  𝑘 ⦌ 𝐵 )  ∈  ℂ ) | 
						
							| 67 | 26 61 32 33 34 63 64 66 | fprodsplitsn | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) ( abs ‘ 𝐵 )  =  ( ∏ 𝑘  ∈  𝑦 ( abs ‘ 𝐵 )  ·  ( abs ‘ ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) ) ) | 
						
							| 68 | 67 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  ( abs ‘ ∏ 𝑘  ∈  𝑦 𝐵 )  =  ∏ 𝑘  ∈  𝑦 ( abs ‘ 𝐵 ) )  →  ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) ( abs ‘ 𝐵 )  =  ( ∏ 𝑘  ∈  𝑦 ( abs ‘ 𝐵 )  ·  ( abs ‘ ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) ) ) | 
						
							| 69 | 25 59 68 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  ( abs ‘ ∏ 𝑘  ∈  𝑦 𝐵 )  =  ∏ 𝑘  ∈  𝑦 ( abs ‘ 𝐵 ) )  →  ( abs ‘ ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) 𝐵 )  =  ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) ( abs ‘ 𝐵 ) ) | 
						
							| 70 | 69 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ( ( abs ‘ ∏ 𝑘  ∈  𝑦 𝐵 )  =  ∏ 𝑘  ∈  𝑦 ( abs ‘ 𝐵 )  →  ( abs ‘ ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) 𝐵 )  =  ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) ( abs ‘ 𝐵 ) ) ) | 
						
							| 71 | 6 10 14 18 24 70 1 | findcard2d | ⊢ ( 𝜑  →  ( abs ‘ ∏ 𝑘  ∈  𝐴 𝐵 )  =  ∏ 𝑘  ∈  𝐴 ( abs ‘ 𝐵 ) ) |