Metamath Proof Explorer


Theorem fprodcl

Description: Closure of a finite product of complex numbers. (Contributed by Scott Fenton, 14-Dec-2017)

Ref Expression
Hypotheses fprodcl.1 ( 𝜑𝐴 ∈ Fin )
fprodcl.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
Assertion fprodcl ( 𝜑 → ∏ 𝑘𝐴 𝐵 ∈ ℂ )

Proof

Step Hyp Ref Expression
1 fprodcl.1 ( 𝜑𝐴 ∈ Fin )
2 fprodcl.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
3 ssidd ( 𝜑 → ℂ ⊆ ℂ )
4 mulcl ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ )
5 4 adantl ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 · 𝑦 ) ∈ ℂ )
6 1cnd ( 𝜑 → 1 ∈ ℂ )
7 3 5 1 2 6 fprodcllem ( 𝜑 → ∏ 𝑘𝐴 𝐵 ∈ ℂ )