Description: Closure of a finite product of complex numbers. (Contributed by Scott Fenton, 14-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fprodcl.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
fprodcl.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
Assertion | fprodcl | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodcl.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
2 | fprodcl.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
3 | ssidd | ⊢ ( 𝜑 → ℂ ⊆ ℂ ) | |
4 | mulcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) | |
5 | 4 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
6 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
7 | 3 5 1 2 6 | fprodcllem | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |