| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodcllem.1 | ⊢ ( 𝜑  →  𝑆  ⊆  ℂ ) | 
						
							| 2 |  | fprodcllem.2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  ·  𝑦 )  ∈  𝑆 ) | 
						
							| 3 |  | fprodcllem.3 | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 4 |  | fprodcllem.4 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  𝑆 ) | 
						
							| 5 |  | fprodcl2lem.5 | ⊢ ( 𝜑  →  𝐴  ≠  ∅ ) | 
						
							| 6 | 5 | a1d | ⊢ ( 𝜑  →  ( ¬  ∏ 𝑘  ∈  𝐴 𝐵  ∈  𝑆  →  𝐴  ≠  ∅ ) ) | 
						
							| 7 | 6 | necon4bd | ⊢ ( 𝜑  →  ( 𝐴  =  ∅  →  ∏ 𝑘  ∈  𝐴 𝐵  ∈  𝑆 ) ) | 
						
							| 8 |  | prodfc | ⊢ ∏ 𝑚  ∈  𝐴 ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ 𝑚 )  =  ∏ 𝑘  ∈  𝐴 𝐵 | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑚  =  ( 𝑓 ‘ 𝑥 )  →  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ 𝑚 )  =  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 10 |  | simprl | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) )  →  ( ♯ ‘ 𝐴 )  ∈  ℕ ) | 
						
							| 11 |  | simprr | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) )  →  𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) | 
						
							| 12 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝑆  ⊆  ℂ ) | 
						
							| 13 | 12 4 | sseldd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 14 | 13 | fmpttd | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ ℂ ) | 
						
							| 15 | 14 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝐴 )  →  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 16 | 15 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) )  ∧  𝑚  ∈  𝐴 )  →  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 17 |  | f1of | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴  →  𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) | 
						
							| 18 | 17 | ad2antll | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) )  →  𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) | 
						
							| 19 |  | fvco3 | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴  ∧  𝑥  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  →  ( ( ( 𝑘  ∈  𝐴  ↦  𝐵 )  ∘  𝑓 ) ‘ 𝑥 )  =  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 20 | 18 19 | sylan | ⊢ ( ( ( 𝜑  ∧  ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) )  ∧  𝑥  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  →  ( ( ( 𝑘  ∈  𝐴  ↦  𝐵 )  ∘  𝑓 ) ‘ 𝑥 )  =  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 21 | 9 10 11 16 20 | fprod | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) )  →  ∏ 𝑚  ∈  𝐴 ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ 𝑚 )  =  ( seq 1 (  ·  ,  ( ( 𝑘  ∈  𝐴  ↦  𝐵 )  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 22 | 8 21 | eqtr3id | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) )  →  ∏ 𝑘  ∈  𝐴 𝐵  =  ( seq 1 (  ·  ,  ( ( 𝑘  ∈  𝐴  ↦  𝐵 )  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 23 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 24 | 10 23 | eleqtrdi | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) )  →  ( ♯ ‘ 𝐴 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 25 | 4 | fmpttd | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ 𝑆 ) | 
						
							| 26 |  | fco | ⊢ ( ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ 𝑆  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 )  →  ( ( 𝑘  ∈  𝐴  ↦  𝐵 )  ∘  𝑓 ) : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝑆 ) | 
						
							| 27 | 25 18 26 | syl2an2r | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) )  →  ( ( 𝑘  ∈  𝐴  ↦  𝐵 )  ∘  𝑓 ) : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝑆 ) | 
						
							| 28 | 27 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) )  ∧  𝑥  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  →  ( ( ( 𝑘  ∈  𝐴  ↦  𝐵 )  ∘  𝑓 ) ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 29 | 2 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  ·  𝑦 )  ∈  𝑆 ) | 
						
							| 30 | 24 28 29 | seqcl | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) )  →  ( seq 1 (  ·  ,  ( ( 𝑘  ∈  𝐴  ↦  𝐵 )  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) )  ∈  𝑆 ) | 
						
							| 31 | 22 30 | eqeltrd | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) )  →  ∏ 𝑘  ∈  𝐴 𝐵  ∈  𝑆 ) | 
						
							| 32 | 31 | expr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ )  →  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴  →  ∏ 𝑘  ∈  𝐴 𝐵  ∈  𝑆 ) ) | 
						
							| 33 | 32 | exlimdv | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ )  →  ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴  →  ∏ 𝑘  ∈  𝐴 𝐵  ∈  𝑆 ) ) | 
						
							| 34 | 33 | expimpd | ⊢ ( 𝜑  →  ( ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ∧  ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 )  →  ∏ 𝑘  ∈  𝐴 𝐵  ∈  𝑆 ) ) | 
						
							| 35 |  | fz1f1o | ⊢ ( 𝐴  ∈  Fin  →  ( 𝐴  =  ∅  ∨  ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ∧  ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) | 
						
							| 36 | 3 35 | syl | ⊢ ( 𝜑  →  ( 𝐴  =  ∅  ∨  ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ∧  ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) | 
						
							| 37 | 7 34 36 | mpjaod | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝐴 𝐵  ∈  𝑆 ) |