Database REAL AND COMPLEX NUMBERS Elementary limits and convergence Finite and infinite products Finite products fprodclf  
				
		 
		
			
		 
		Description:   Closure of a finite product of complex numbers.  A version of fprodcl  using bound-variable hypotheses instead of distinct variable conditions.
       (Contributed by Glauco Siliprandi , 5-Apr-2020) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						fprodclf.kph ⊢  Ⅎ 𝑘  𝜑   
					
						fprodclf.a ⊢  ( 𝜑   →  𝐴   ∈  Fin )  
					
						fprodclf.b ⊢  ( ( 𝜑   ∧  𝑘   ∈  𝐴  )  →  𝐵   ∈  ℂ )  
				
					Assertion 
					fprodclf ⊢   ( 𝜑   →  ∏ 𝑘   ∈  𝐴  𝐵   ∈  ℂ )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							fprodclf.kph ⊢  Ⅎ 𝑘  𝜑   
						
							2 
								
							 
							fprodclf.a ⊢  ( 𝜑   →  𝐴   ∈  Fin )  
						
							3 
								
							 
							fprodclf.b ⊢  ( ( 𝜑   ∧  𝑘   ∈  𝐴  )  →  𝐵   ∈  ℂ )  
						
							4 
								
							 
							ssidd ⊢  ( 𝜑   →  ℂ  ⊆  ℂ )  
						
							5 
								
							 
							mulcl ⊢  ( ( 𝑥   ∈  ℂ  ∧  𝑦   ∈  ℂ )  →  ( 𝑥   ·  𝑦  )  ∈  ℂ )  
						
							6 
								5 
							 
							adantl ⊢  ( ( 𝜑   ∧  ( 𝑥   ∈  ℂ  ∧  𝑦   ∈  ℂ ) )  →  ( 𝑥   ·  𝑦  )  ∈  ℂ )  
						
							7 
								
							 
							1cnd ⊢  ( 𝜑   →  1  ∈  ℂ )  
						
							8 
								1  4  6  2  3  7 
							 
							fprodcllemf ⊢  ( 𝜑   →  ∏ 𝑘   ∈  𝐴  𝐵   ∈  ℂ )