Step |
Hyp |
Ref |
Expression |
1 |
|
fprodcllem.1 |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
2 |
|
fprodcllem.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑆 ) |
3 |
|
fprodcllem.3 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
4 |
|
fprodcllem.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑆 ) |
5 |
|
fprodcllem.5 |
⊢ ( 𝜑 → 1 ∈ 𝑆 ) |
6 |
|
prodeq1 |
⊢ ( 𝐴 = ∅ → ∏ 𝑘 ∈ 𝐴 𝐵 = ∏ 𝑘 ∈ ∅ 𝐵 ) |
7 |
|
prod0 |
⊢ ∏ 𝑘 ∈ ∅ 𝐵 = 1 |
8 |
6 7
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ∏ 𝑘 ∈ 𝐴 𝐵 = 1 ) |
9 |
8
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → ∏ 𝑘 ∈ 𝐴 𝐵 = 1 ) |
10 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → 1 ∈ 𝑆 ) |
11 |
9 10
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ) |
12 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → 𝑆 ⊆ ℂ ) |
13 |
2
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑆 ) |
14 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ Fin ) |
15 |
4
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑆 ) |
16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → 𝐴 ≠ ∅ ) |
17 |
12 13 14 15 16
|
fprodcl2lem |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ) |
18 |
11 17
|
pm2.61dane |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ) |