| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodcllemf.ph | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | fprodcllemf.s | ⊢ ( 𝜑  →  𝑆  ⊆  ℂ ) | 
						
							| 3 |  | fprodcllemf.xy | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  ·  𝑦 )  ∈  𝑆 ) | 
						
							| 4 |  | fprodcllemf.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 5 |  | fprodcllemf.b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  𝑆 ) | 
						
							| 6 |  | fprodcllemf.1 | ⊢ ( 𝜑  →  1  ∈  𝑆 ) | 
						
							| 7 |  | nfcv | ⊢ Ⅎ 𝑗 𝐵 | 
						
							| 8 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐵 | 
						
							| 9 |  | csbeq1a | ⊢ ( 𝑘  =  𝑗  →  𝐵  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) | 
						
							| 10 | 7 8 9 | cbvprodi | ⊢ ∏ 𝑘  ∈  𝐴 𝐵  =  ∏ 𝑗  ∈  𝐴 ⦋ 𝑗  /  𝑘 ⦌ 𝐵 | 
						
							| 11 | 5 | ex | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  →  𝐵  ∈  𝑆 ) ) | 
						
							| 12 | 1 11 | ralrimi | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝐴 𝐵  ∈  𝑆 ) | 
						
							| 13 |  | rspsbc | ⊢ ( 𝑗  ∈  𝐴  →  ( ∀ 𝑘  ∈  𝐴 𝐵  ∈  𝑆  →  [ 𝑗  /  𝑘 ] 𝐵  ∈  𝑆 ) ) | 
						
							| 14 | 12 13 | mpan9 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  [ 𝑗  /  𝑘 ] 𝐵  ∈  𝑆 ) | 
						
							| 15 |  | sbcel1g | ⊢ ( 𝑗  ∈  V  →  ( [ 𝑗  /  𝑘 ] 𝐵  ∈  𝑆  ↔  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  𝑆 ) ) | 
						
							| 16 | 15 | elv | ⊢ ( [ 𝑗  /  𝑘 ] 𝐵  ∈  𝑆  ↔  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  𝑆 ) | 
						
							| 17 | 14 16 | sylib | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  𝑆 ) | 
						
							| 18 | 2 3 4 17 6 | fprodcllem | ⊢ ( 𝜑  →  ∏ 𝑗  ∈  𝐴 ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  𝑆 ) | 
						
							| 19 | 10 18 | eqeltrid | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝐴 𝐵  ∈  𝑆 ) |