| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodcn.d | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | fprodcn.k | ⊢ 𝐾  =  ( TopOpen ‘ ℂfld ) | 
						
							| 3 |  | fprodcn.j | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 4 |  | fprodcn.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 5 |  | fprodcn.b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( 𝑥  ∈  𝑋  ↦  𝐵 )  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 6 |  | prodeq1 | ⊢ ( 𝑦  =  ∅  →  ∏ 𝑘  ∈  𝑦 𝐵  =  ∏ 𝑘  ∈  ∅ 𝐵 ) | 
						
							| 7 | 6 | mpteq2dv | ⊢ ( 𝑦  =  ∅  →  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  𝑦 𝐵 )  =  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  ∅ 𝐵 ) ) | 
						
							| 8 | 7 | eleq1d | ⊢ ( 𝑦  =  ∅  →  ( ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  𝑦 𝐵 )  ∈  ( 𝐽  Cn  𝐾 )  ↔  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  ∅ 𝐵 )  ∈  ( 𝐽  Cn  𝐾 ) ) ) | 
						
							| 9 |  | prodeq1 | ⊢ ( 𝑦  =  𝑧  →  ∏ 𝑘  ∈  𝑦 𝐵  =  ∏ 𝑘  ∈  𝑧 𝐵 ) | 
						
							| 10 | 9 | mpteq2dv | ⊢ ( 𝑦  =  𝑧  →  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  𝑦 𝐵 )  =  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  𝑧 𝐵 ) ) | 
						
							| 11 | 10 | eleq1d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  𝑦 𝐵 )  ∈  ( 𝐽  Cn  𝐾 )  ↔  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  𝑧 𝐵 )  ∈  ( 𝐽  Cn  𝐾 ) ) ) | 
						
							| 12 |  | prodeq1 | ⊢ ( 𝑦  =  ( 𝑧  ∪  { 𝑤 } )  →  ∏ 𝑘  ∈  𝑦 𝐵  =  ∏ 𝑘  ∈  ( 𝑧  ∪  { 𝑤 } ) 𝐵 ) | 
						
							| 13 | 12 | mpteq2dv | ⊢ ( 𝑦  =  ( 𝑧  ∪  { 𝑤 } )  →  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  𝑦 𝐵 )  =  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  ( 𝑧  ∪  { 𝑤 } ) 𝐵 ) ) | 
						
							| 14 | 13 | eleq1d | ⊢ ( 𝑦  =  ( 𝑧  ∪  { 𝑤 } )  →  ( ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  𝑦 𝐵 )  ∈  ( 𝐽  Cn  𝐾 )  ↔  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  ( 𝑧  ∪  { 𝑤 } ) 𝐵 )  ∈  ( 𝐽  Cn  𝐾 ) ) ) | 
						
							| 15 |  | prodeq1 | ⊢ ( 𝑦  =  𝐴  →  ∏ 𝑘  ∈  𝑦 𝐵  =  ∏ 𝑘  ∈  𝐴 𝐵 ) | 
						
							| 16 | 15 | mpteq2dv | ⊢ ( 𝑦  =  𝐴  →  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  𝑦 𝐵 )  =  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  𝐴 𝐵 ) ) | 
						
							| 17 | 16 | eleq1d | ⊢ ( 𝑦  =  𝐴  →  ( ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  𝑦 𝐵 )  ∈  ( 𝐽  Cn  𝐾 )  ↔  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  𝐴 𝐵 )  ∈  ( 𝐽  Cn  𝐾 ) ) ) | 
						
							| 18 |  | prod0 | ⊢ ∏ 𝑘  ∈  ∅ 𝐵  =  1 | 
						
							| 19 | 18 | mpteq2i | ⊢ ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  ∅ 𝐵 )  =  ( 𝑥  ∈  𝑋  ↦  1 ) | 
						
							| 20 |  | eqidd | ⊢ ( 𝑥  =  𝑦  →  1  =  1 ) | 
						
							| 21 | 20 | cbvmptv | ⊢ ( 𝑥  ∈  𝑋  ↦  1 )  =  ( 𝑦  ∈  𝑋  ↦  1 ) | 
						
							| 22 | 19 21 | eqtri | ⊢ ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  ∅ 𝐵 )  =  ( 𝑦  ∈  𝑋  ↦  1 ) | 
						
							| 23 | 22 | a1i | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  ∅ 𝐵 )  =  ( 𝑦  ∈  𝑋  ↦  1 ) ) | 
						
							| 24 | 2 | cnfldtopon | ⊢ 𝐾  ∈  ( TopOn ‘ ℂ ) | 
						
							| 25 | 24 | a1i | ⊢ ( 𝜑  →  𝐾  ∈  ( TopOn ‘ ℂ ) ) | 
						
							| 26 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 27 | 3 25 26 | cnmptc | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝑋  ↦  1 )  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 28 | 23 27 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  ∅ 𝐵 )  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 29 |  | nfcv | ⊢ Ⅎ 𝑦 ∏ 𝑘  ∈  ( 𝑧  ∪  { 𝑤 } ) 𝐵 | 
						
							| 30 |  | nfcv | ⊢ Ⅎ 𝑥 ( 𝑧  ∪  { 𝑤 } ) | 
						
							| 31 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝐵 | 
						
							| 32 | 30 31 | nfcprod | ⊢ Ⅎ 𝑥 ∏ 𝑘  ∈  ( 𝑧  ∪  { 𝑤 } ) ⦋ 𝑦  /  𝑥 ⦌ 𝐵 | 
						
							| 33 |  | csbeq1a | ⊢ ( 𝑥  =  𝑦  →  𝐵  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) | 
						
							| 34 | 33 | prodeq2ad | ⊢ ( 𝑥  =  𝑦  →  ∏ 𝑘  ∈  ( 𝑧  ∪  { 𝑤 } ) 𝐵  =  ∏ 𝑘  ∈  ( 𝑧  ∪  { 𝑤 } ) ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) | 
						
							| 35 | 29 32 34 | cbvmpt | ⊢ ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  ( 𝑧  ∪  { 𝑤 } ) 𝐵 )  =  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑘  ∈  ( 𝑧  ∪  { 𝑤 } ) ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) | 
						
							| 36 | 35 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ⊆  𝐴  ∧  𝑤  ∈  ( 𝐴  ∖  𝑧 ) ) )  ∧  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  𝑧 𝐵 )  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  ( 𝑧  ∪  { 𝑤 } ) 𝐵 )  =  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑘  ∈  ( 𝑧  ∪  { 𝑤 } ) ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 37 |  | nfv | ⊢ Ⅎ 𝑘 ( 𝑧  ⊆  𝐴  ∧  𝑤  ∈  ( 𝐴  ∖  𝑧 ) ) | 
						
							| 38 | 1 37 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  ( 𝑧  ⊆  𝐴  ∧  𝑤  ∈  ( 𝐴  ∖  𝑧 ) ) ) | 
						
							| 39 |  | nfcv | ⊢ Ⅎ 𝑘 𝑋 | 
						
							| 40 |  | nfcv | ⊢ Ⅎ 𝑘 𝑧 | 
						
							| 41 | 40 | nfcprod1 | ⊢ Ⅎ 𝑘 ∏ 𝑘  ∈  𝑧 𝐵 | 
						
							| 42 | 39 41 | nfmpt | ⊢ Ⅎ 𝑘 ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  𝑧 𝐵 ) | 
						
							| 43 |  | nfcv | ⊢ Ⅎ 𝑘 ( 𝐽  Cn  𝐾 ) | 
						
							| 44 | 42 43 | nfel | ⊢ Ⅎ 𝑘 ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  𝑧 𝐵 )  ∈  ( 𝐽  Cn  𝐾 ) | 
						
							| 45 | 38 44 | nfan | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  ( 𝑧  ⊆  𝐴  ∧  𝑤  ∈  ( 𝐴  ∖  𝑧 ) ) )  ∧  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  𝑧 𝐵 )  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 46 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ⊆  𝐴  ∧  𝑤  ∈  ( 𝐴  ∖  𝑧 ) ) )  ∧  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  𝑧 𝐵 )  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 47 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ⊆  𝐴  ∧  𝑤  ∈  ( 𝐴  ∖  𝑧 ) ) )  ∧  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  𝑧 𝐵 )  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝐴  ∈  Fin ) | 
						
							| 48 |  | nfcv | ⊢ Ⅎ 𝑦 𝐵 | 
						
							| 49 | 48 31 33 | cbvmpt | ⊢ ( 𝑥  ∈  𝑋  ↦  𝐵 )  =  ( 𝑦  ∈  𝑋  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) | 
						
							| 50 | 49 | eqcomi | ⊢ ( 𝑦  ∈  𝑋  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 )  =  ( 𝑥  ∈  𝑋  ↦  𝐵 ) | 
						
							| 51 | 50 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( 𝑦  ∈  𝑋  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 )  =  ( 𝑥  ∈  𝑋  ↦  𝐵 ) ) | 
						
							| 52 | 51 5 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( 𝑦  ∈  𝑋  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 )  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 53 | 52 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑧  ⊆  𝐴  ∧  𝑤  ∈  ( 𝐴  ∖  𝑧 ) ) )  ∧  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  𝑧 𝐵 )  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑘  ∈  𝐴 )  →  ( 𝑦  ∈  𝑋  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 )  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 54 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ⊆  𝐴  ∧  𝑤  ∈  ( 𝐴  ∖  𝑧 ) ) )  ∧  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  𝑧 𝐵 )  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝑧  ⊆  𝐴 ) | 
						
							| 55 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ⊆  𝐴  ∧  𝑤  ∈  ( 𝐴  ∖  𝑧 ) ) )  ∧  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  𝑧 𝐵 )  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝑤  ∈  ( 𝐴  ∖  𝑧 ) ) | 
						
							| 56 |  | nfcv | ⊢ Ⅎ 𝑦 ∏ 𝑘  ∈  𝑧 𝐵 | 
						
							| 57 |  | nfcv | ⊢ Ⅎ 𝑥 𝑧 | 
						
							| 58 | 57 31 | nfcprod | ⊢ Ⅎ 𝑥 ∏ 𝑘  ∈  𝑧 ⦋ 𝑦  /  𝑥 ⦌ 𝐵 | 
						
							| 59 | 33 | prodeq2sdv | ⊢ ( 𝑥  =  𝑦  →  ∏ 𝑘  ∈  𝑧 𝐵  =  ∏ 𝑘  ∈  𝑧 ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) | 
						
							| 60 | 56 58 59 | cbvmpt | ⊢ ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  𝑧 𝐵 )  =  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑘  ∈  𝑧 ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) | 
						
							| 61 | 60 | eleq1i | ⊢ ( ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  𝑧 𝐵 )  ∈  ( 𝐽  Cn  𝐾 )  ↔  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑘  ∈  𝑧 ⦋ 𝑦  /  𝑥 ⦌ 𝐵 )  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 62 | 61 | biimpi | ⊢ ( ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  𝑧 𝐵 )  ∈  ( 𝐽  Cn  𝐾 )  →  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑘  ∈  𝑧 ⦋ 𝑦  /  𝑥 ⦌ 𝐵 )  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 63 | 62 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ⊆  𝐴  ∧  𝑤  ∈  ( 𝐴  ∖  𝑧 ) ) )  ∧  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  𝑧 𝐵 )  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑘  ∈  𝑧 ⦋ 𝑦  /  𝑥 ⦌ 𝐵 )  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 64 | 45 2 46 47 53 54 55 63 | fprodcnlem | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ⊆  𝐴  ∧  𝑤  ∈  ( 𝐴  ∖  𝑧 ) ) )  ∧  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  𝑧 𝐵 )  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑘  ∈  ( 𝑧  ∪  { 𝑤 } ) ⦋ 𝑦  /  𝑥 ⦌ 𝐵 )  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 65 | 36 64 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ⊆  𝐴  ∧  𝑤  ∈  ( 𝐴  ∖  𝑧 ) ) )  ∧  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  𝑧 𝐵 )  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  ( 𝑧  ∪  { 𝑤 } ) 𝐵 )  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 66 | 65 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑧  ⊆  𝐴  ∧  𝑤  ∈  ( 𝐴  ∖  𝑧 ) ) )  →  ( ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  𝑧 𝐵 )  ∈  ( 𝐽  Cn  𝐾 )  →  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  ( 𝑧  ∪  { 𝑤 } ) 𝐵 )  ∈  ( 𝐽  Cn  𝐾 ) ) ) | 
						
							| 67 | 8 11 14 17 28 66 4 | findcard2d | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  𝐴 𝐵 )  ∈  ( 𝐽  Cn  𝐾 ) ) |