Metamath Proof Explorer


Theorem fprodcn

Description: A finite product of functions to complex numbers from a common topological space is continuous. The class expression for B normally contains free variables k and x to index it. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses fprodcn.d 𝑘 𝜑
fprodcn.k 𝐾 = ( TopOpen ‘ ℂfld )
fprodcn.j ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
fprodcn.a ( 𝜑𝐴 ∈ Fin )
fprodcn.b ( ( 𝜑𝑘𝐴 ) → ( 𝑥𝑋𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) )
Assertion fprodcn ( 𝜑 → ( 𝑥𝑋 ↦ ∏ 𝑘𝐴 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) )

Proof

Step Hyp Ref Expression
1 fprodcn.d 𝑘 𝜑
2 fprodcn.k 𝐾 = ( TopOpen ‘ ℂfld )
3 fprodcn.j ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
4 fprodcn.a ( 𝜑𝐴 ∈ Fin )
5 fprodcn.b ( ( 𝜑𝑘𝐴 ) → ( 𝑥𝑋𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) )
6 prodeq1 ( 𝑦 = ∅ → ∏ 𝑘𝑦 𝐵 = ∏ 𝑘 ∈ ∅ 𝐵 )
7 6 mpteq2dv ( 𝑦 = ∅ → ( 𝑥𝑋 ↦ ∏ 𝑘𝑦 𝐵 ) = ( 𝑥𝑋 ↦ ∏ 𝑘 ∈ ∅ 𝐵 ) )
8 7 eleq1d ( 𝑦 = ∅ → ( ( 𝑥𝑋 ↦ ∏ 𝑘𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑥𝑋 ↦ ∏ 𝑘 ∈ ∅ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) )
9 prodeq1 ( 𝑦 = 𝑧 → ∏ 𝑘𝑦 𝐵 = ∏ 𝑘𝑧 𝐵 )
10 9 mpteq2dv ( 𝑦 = 𝑧 → ( 𝑥𝑋 ↦ ∏ 𝑘𝑦 𝐵 ) = ( 𝑥𝑋 ↦ ∏ 𝑘𝑧 𝐵 ) )
11 10 eleq1d ( 𝑦 = 𝑧 → ( ( 𝑥𝑋 ↦ ∏ 𝑘𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑥𝑋 ↦ ∏ 𝑘𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) )
12 prodeq1 ( 𝑦 = ( 𝑧 ∪ { 𝑤 } ) → ∏ 𝑘𝑦 𝐵 = ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 )
13 12 mpteq2dv ( 𝑦 = ( 𝑧 ∪ { 𝑤 } ) → ( 𝑥𝑋 ↦ ∏ 𝑘𝑦 𝐵 ) = ( 𝑥𝑋 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ) )
14 13 eleq1d ( 𝑦 = ( 𝑧 ∪ { 𝑤 } ) → ( ( 𝑥𝑋 ↦ ∏ 𝑘𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑥𝑋 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) )
15 prodeq1 ( 𝑦 = 𝐴 → ∏ 𝑘𝑦 𝐵 = ∏ 𝑘𝐴 𝐵 )
16 15 mpteq2dv ( 𝑦 = 𝐴 → ( 𝑥𝑋 ↦ ∏ 𝑘𝑦 𝐵 ) = ( 𝑥𝑋 ↦ ∏ 𝑘𝐴 𝐵 ) )
17 16 eleq1d ( 𝑦 = 𝐴 → ( ( 𝑥𝑋 ↦ ∏ 𝑘𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑥𝑋 ↦ ∏ 𝑘𝐴 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) )
18 prod0 𝑘 ∈ ∅ 𝐵 = 1
19 18 mpteq2i ( 𝑥𝑋 ↦ ∏ 𝑘 ∈ ∅ 𝐵 ) = ( 𝑥𝑋 ↦ 1 )
20 eqidd ( 𝑥 = 𝑦 → 1 = 1 )
21 20 cbvmptv ( 𝑥𝑋 ↦ 1 ) = ( 𝑦𝑋 ↦ 1 )
22 19 21 eqtri ( 𝑥𝑋 ↦ ∏ 𝑘 ∈ ∅ 𝐵 ) = ( 𝑦𝑋 ↦ 1 )
23 22 a1i ( 𝜑 → ( 𝑥𝑋 ↦ ∏ 𝑘 ∈ ∅ 𝐵 ) = ( 𝑦𝑋 ↦ 1 ) )
24 2 cnfldtopon 𝐾 ∈ ( TopOn ‘ ℂ )
25 24 a1i ( 𝜑𝐾 ∈ ( TopOn ‘ ℂ ) )
26 1cnd ( 𝜑 → 1 ∈ ℂ )
27 3 25 26 cnmptc ( 𝜑 → ( 𝑦𝑋 ↦ 1 ) ∈ ( 𝐽 Cn 𝐾 ) )
28 23 27 eqeltrd ( 𝜑 → ( 𝑥𝑋 ↦ ∏ 𝑘 ∈ ∅ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) )
29 nfcv 𝑦𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵
30 nfcv 𝑥 ( 𝑧 ∪ { 𝑤 } )
31 nfcsb1v 𝑥 𝑦 / 𝑥 𝐵
32 30 31 nfcprod 𝑥𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝑦 / 𝑥 𝐵
33 csbeq1a ( 𝑥 = 𝑦𝐵 = 𝑦 / 𝑥 𝐵 )
34 33 prodeq2ad ( 𝑥 = 𝑦 → ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 = ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝑦 / 𝑥 𝐵 )
35 29 32 34 cbvmpt ( 𝑥𝑋 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ) = ( 𝑦𝑋 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝑦 / 𝑥 𝐵 )
36 35 a1i ( ( ( 𝜑 ∧ ( 𝑧𝐴𝑤 ∈ ( 𝐴𝑧 ) ) ) ∧ ( 𝑥𝑋 ↦ ∏ 𝑘𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑥𝑋 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ) = ( 𝑦𝑋 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝑦 / 𝑥 𝐵 ) )
37 nfv 𝑘 ( 𝑧𝐴𝑤 ∈ ( 𝐴𝑧 ) )
38 1 37 nfan 𝑘 ( 𝜑 ∧ ( 𝑧𝐴𝑤 ∈ ( 𝐴𝑧 ) ) )
39 nfcv 𝑘 𝑋
40 nfcv 𝑘 𝑧
41 40 nfcprod1 𝑘𝑘𝑧 𝐵
42 39 41 nfmpt 𝑘 ( 𝑥𝑋 ↦ ∏ 𝑘𝑧 𝐵 )
43 nfcv 𝑘 ( 𝐽 Cn 𝐾 )
44 42 43 nfel 𝑘 ( 𝑥𝑋 ↦ ∏ 𝑘𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 )
45 38 44 nfan 𝑘 ( ( 𝜑 ∧ ( 𝑧𝐴𝑤 ∈ ( 𝐴𝑧 ) ) ) ∧ ( 𝑥𝑋 ↦ ∏ 𝑘𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) )
46 3 ad2antrr ( ( ( 𝜑 ∧ ( 𝑧𝐴𝑤 ∈ ( 𝐴𝑧 ) ) ) ∧ ( 𝑥𝑋 ↦ ∏ 𝑘𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
47 4 ad2antrr ( ( ( 𝜑 ∧ ( 𝑧𝐴𝑤 ∈ ( 𝐴𝑧 ) ) ) ∧ ( 𝑥𝑋 ↦ ∏ 𝑘𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐴 ∈ Fin )
48 nfcv 𝑦 𝐵
49 48 31 33 cbvmpt ( 𝑥𝑋𝐵 ) = ( 𝑦𝑋 𝑦 / 𝑥 𝐵 )
50 49 eqcomi ( 𝑦𝑋 𝑦 / 𝑥 𝐵 ) = ( 𝑥𝑋𝐵 )
51 50 a1i ( ( 𝜑𝑘𝐴 ) → ( 𝑦𝑋 𝑦 / 𝑥 𝐵 ) = ( 𝑥𝑋𝐵 ) )
52 51 5 eqeltrd ( ( 𝜑𝑘𝐴 ) → ( 𝑦𝑋 𝑦 / 𝑥 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) )
53 52 ad4ant14 ( ( ( ( 𝜑 ∧ ( 𝑧𝐴𝑤 ∈ ( 𝐴𝑧 ) ) ) ∧ ( 𝑥𝑋 ↦ ∏ 𝑘𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑘𝐴 ) → ( 𝑦𝑋 𝑦 / 𝑥 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) )
54 simplrl ( ( ( 𝜑 ∧ ( 𝑧𝐴𝑤 ∈ ( 𝐴𝑧 ) ) ) ∧ ( 𝑥𝑋 ↦ ∏ 𝑘𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → 𝑧𝐴 )
55 simplrr ( ( ( 𝜑 ∧ ( 𝑧𝐴𝑤 ∈ ( 𝐴𝑧 ) ) ) ∧ ( 𝑥𝑋 ↦ ∏ 𝑘𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → 𝑤 ∈ ( 𝐴𝑧 ) )
56 nfcv 𝑦𝑘𝑧 𝐵
57 nfcv 𝑥 𝑧
58 57 31 nfcprod 𝑥𝑘𝑧 𝑦 / 𝑥 𝐵
59 33 prodeq2sdv ( 𝑥 = 𝑦 → ∏ 𝑘𝑧 𝐵 = ∏ 𝑘𝑧 𝑦 / 𝑥 𝐵 )
60 56 58 59 cbvmpt ( 𝑥𝑋 ↦ ∏ 𝑘𝑧 𝐵 ) = ( 𝑦𝑋 ↦ ∏ 𝑘𝑧 𝑦 / 𝑥 𝐵 )
61 60 eleq1i ( ( 𝑥𝑋 ↦ ∏ 𝑘𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑦𝑋 ↦ ∏ 𝑘𝑧 𝑦 / 𝑥 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) )
62 61 biimpi ( ( 𝑥𝑋 ↦ ∏ 𝑘𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) → ( 𝑦𝑋 ↦ ∏ 𝑘𝑧 𝑦 / 𝑥 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) )
63 62 adantl ( ( ( 𝜑 ∧ ( 𝑧𝐴𝑤 ∈ ( 𝐴𝑧 ) ) ) ∧ ( 𝑥𝑋 ↦ ∏ 𝑘𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑦𝑋 ↦ ∏ 𝑘𝑧 𝑦 / 𝑥 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) )
64 45 2 46 47 53 54 55 63 fprodcnlem ( ( ( 𝜑 ∧ ( 𝑧𝐴𝑤 ∈ ( 𝐴𝑧 ) ) ) ∧ ( 𝑥𝑋 ↦ ∏ 𝑘𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑦𝑋 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝑦 / 𝑥 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) )
65 36 64 eqeltrd ( ( ( 𝜑 ∧ ( 𝑧𝐴𝑤 ∈ ( 𝐴𝑧 ) ) ) ∧ ( 𝑥𝑋 ↦ ∏ 𝑘𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑥𝑋 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) )
66 65 ex ( ( 𝜑 ∧ ( 𝑧𝐴𝑤 ∈ ( 𝐴𝑧 ) ) ) → ( ( 𝑥𝑋 ↦ ∏ 𝑘𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) → ( 𝑥𝑋 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) )
67 8 11 14 17 28 66 4 findcard2d ( 𝜑 → ( 𝑥𝑋 ↦ ∏ 𝑘𝐴 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) )